Computer Security

15. Anonymous Connectivity & Tor

Paul Krzyzanowski

Rutgers University

Fall 2019

Anonymous communication

Communicate while preserving privacy

Often considered bad: "only criminals need to hide"

- Drugs
- Hit men
- Stolen identities
- Counterfeit \$
- Stolen credit cards
- Guns, hacking
- Bitcoin laundering
- Fraud
- Porn

Anonymous communication

Communicate while preserving privacy

But there are legitimate uses

- Avoid consequences (social, political, legal)
 - Accessing content in oppressive governments
 - · Political dissidents, whistleblowers, crime reporting
- Avoid geolocation-based services
- Hide corporate activity (who's talking to whom)
- Perform private investigations
- Hide personal info
 - Searching for information about diseases you have, loans, credit problems

Some services retain information about you

- Accounts, configuration settings
- Cloud storage
 - Files, email, photos, blogs, web sites
 - Encryption so the server has no access not always possible
- Your interests, browsing history, messages
 - Important for data mining & targeted advertising
 - E.g., Facebook, Google

Cookies on the web

- Local name=value data stored at the browser & sent to a server
 - Avoids having to log in to a service repeatedly
 - Keeps track of session, shopping cart, preferences
- Associated with the site (same-origin policy)
 - Facebook cookies don't get sent to google ... and vice versa
- Tracking cookies (third-party cookies)
 - Websites can embed resources from another site (e.g., bugme.com)
 - Via an ad in an iFrame or a 1x1 pixel image
 - bugme.com's cookies will be sent to bugme.com
 - HTTP message contains a Referer header, which identifies the encompassing page
 - Lots of different sites may use bugme.com's services
 - bugme.com can now build a list of which sites the visitor has visited
- Most browsers have policies to block third-party cookies

Private Browsing

- Browsers offer a "private" browsing modes
 - Apple Private Browsing, Mozilla Private Browsing,
 Google Chrome Incognito Mode, Microsoft InPrivate browsing
- What do these modes do?
 - Do not send stored cookies
 - Do not allow servers to set cookies
 - Do not use or save auto-fill information
 - List of downloaded content
 - At the end of a session
 - Discard cached pages
 - Discard browsing & search history

Does not protect the user from viruses, phishing, or security attacks

Is private browsing private?

- It doesn't leave too many breadcrumbs on your device
- It limits the ability of an attacker to use cookies
- But
 - Your system may be logging outbound IP addresses
 - Web servers get your IP address
 - They can also correlate with past traffic
 - Proxies know what you did ... so do firewalls & routers
 - Your ISP knows who you are and where you went
 - DNS servers know what addresses you're looking up
 - Some store and use this data

Answer: not really

Improvements to Chrome's Incognito Mode

Detecting Incognito mode allows websites to block users if they cannot be tracked

- Services had a simple trick to determine whether a user is using Incognito Mode
 - Use FileSystem API Chrome-specific method that gives a website a sandboxed file system for its own use
 - API is completely disabled in Incognito mode
- Near-term plan (early 2019)
 - Google will create a virtual file system in RAM
 - Will be erased when the user leaves Incognito Mode

Other browsers have similar problems

Firefox, IE/Edge

- IndexedDB is not available
- Attempts to access it causes it to throw an InvalidStateError

Safari

- Disables its localstorage API in Private Browsing
- An attempt to call the setItem method throws an exception

Older versions of IE10/Edge

IndexedDB doesn't even exist in privacy mode

Other techniques exist too

 Services can send code to check for private browsing modes and block users if they cannot be tracked

Encrypted sessions?

Great ... eavesdroppers can't see the plaintext

But they can see where it's coming from and where it's going

The service knows your IP address & can track you

Surface Web Deep Web Dark Web

The different types of web

Surface Web

- Web content that can be indexed by mainstream search engines
- Search engines use web crawlers
 - Go through a list of addresses from past crawls
 - Access pages provided as sitemaps by website owners
 - Traverse links on pages being crawled to find new content

Deep Web

- Web content that a search engine cannot find
- Unindexed content, often from dynamically-generated pages
- E.g., query results from libraries, govt and corporate databases

Dark Web

Part of the Deep Web that has been intentionally hidden

- Not accessible through standard browsers
 - Need special software, such as a Tor browser
- Servers do not register names with DNS
 - Sometimes use a .onion pseudo-top-level domain
- Still uses
 - HTML web pages
 - HTTP & FTP for moving content

Dark Web

Legitimate & illicit services

- Drugs, stolen identities, counterfeit currency, etc.
- Blackbook (similar to Facebook), recipes, books
- Anonymous news access:
 - ProPublica: https://www.propub3r6espa33w.onion/
 - NY Times: https://www.nytimes3xbfgragh.onion/
- DuckDuckGo: http://3g2upl4pq6kufc4m.onion/
- SecureDrop leak info anonymously: https://secrdrop5wyphb5x.onion/
- CIA: ciadotgov4sjwlzihbbgxnqg3xiyrg7so2r2o3lt5wz5ypk4sxyjstad.onion

Tor & Anonymous Connectivity

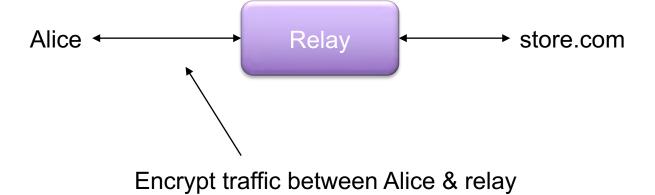
Tor = The Onion Router

- Tor Browser = preconfigured web browser that uses Tor
 - Provides anonymous browsing
- Hosted on a collection of relays around the world
 - Run by non-profits, universities, individuals
 - Currently over 6,000
- 100K to millions of users
 - Exact data unknown it's anonymous
 - Terabytes of data routed each second

History

- Onion routing developed in the 1995 at the U.S. Naval Research Laboratory to protect U.S. intelligence communications
 - Goal: develop a way of communicating over the Internet without revealing who is talking to whom ... even if someone is monitoring their network
- Additional work by the Defense Advanced Research Projects Agency (DARPA)
- Patented by the U.S. Navy in 1998
 - Naval Research Laboratory released to code for Tor under a free license
- The Tor Project
 - Founded in 2006 as a non-profit organization with support of the EFF

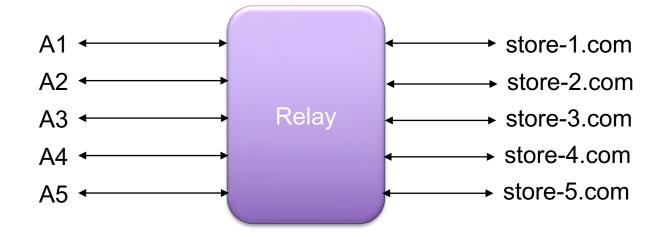
What is anonymity?


Unobservability

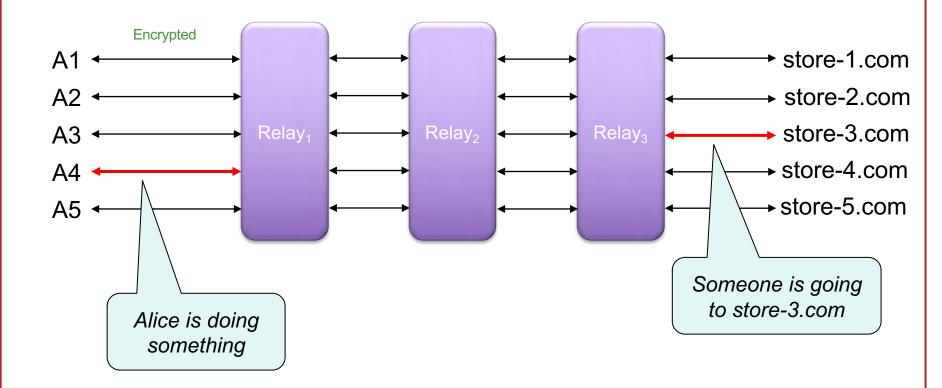
Inability of an observer to leak participants to actions

Unlinkability

- Inability to associate an observer with a profile of actions
- E.g., Alice posts a blog under an assumed name
 Unlinkability = inability to link Alice to a specific profile


Relay

Relay


Shared relay with multiple parties

We can use encrypted connections (TLS) to hide network traffic

What if someone eavesdrops on the relay?

Multiple relays

Tor uses (by default) three layers of relays.

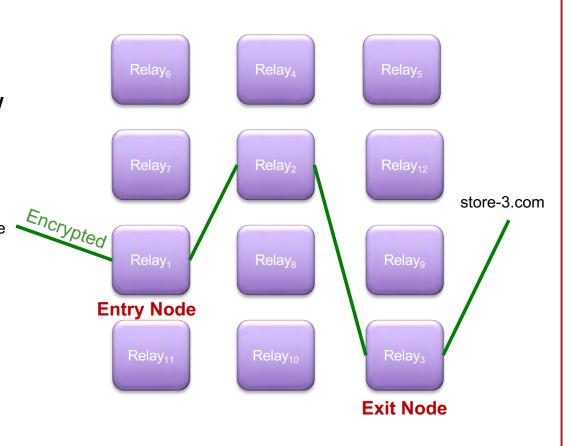
This makes it more difficult to know where to look.

Correlation – by message time & size – is still possible

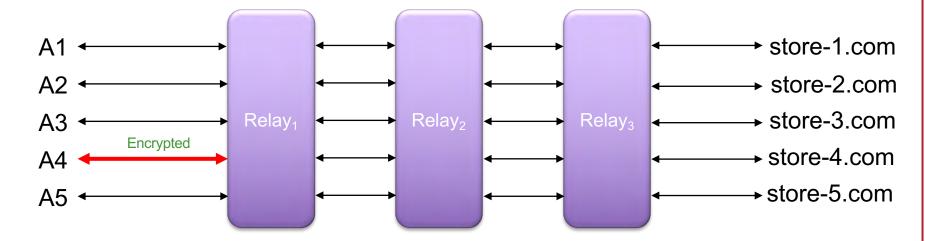
... but difficult since the relays are scattered across ISPs and across the world

Correlation Attack

If an eavesdropper watches entry & exit of data

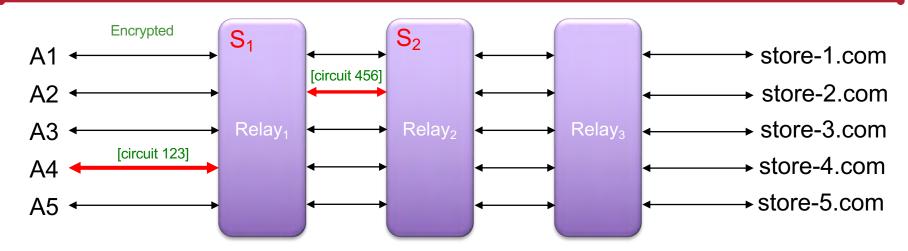

- She can correlate timing & size of data at the 1st relay with outputs of the last relays
- If Alice sends a 2 KB request to Relay₁ at 19:12:15 and Relay₃ sends a 2 KB request to store-3.com at 19:12:16 and store-3.com sends a 150 KB response to Relay₃ at 19:12:17 and Alice receives a 150 KB response at 19:12:18
 - ... we're pretty sure Alice is talking to store-3.com

Correlation Attack


- You can make a correlation attack attack difficult
 - Pad or fragment messages to be the same size
 - Queue up multiple messages, shuffle them, and transmit them at once
- This works in theory but is a pain in practice
 - Extra latency, traffic
 - You still need A LOT of users to ensure anonymity
- Relays should be hosted by third parties to get many different groups as input
 - E.g., a relay within fbi.gov tells you all input comes from fbi.gov

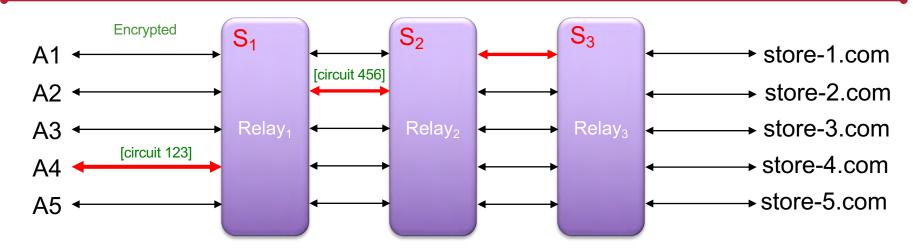
Circuits

- Alice selects a list of relays through which her message will flow
- This path is called a circuit
- No node knows if the previous node is the originator or relay
 - Only the final node (exit node) knows it is the last node



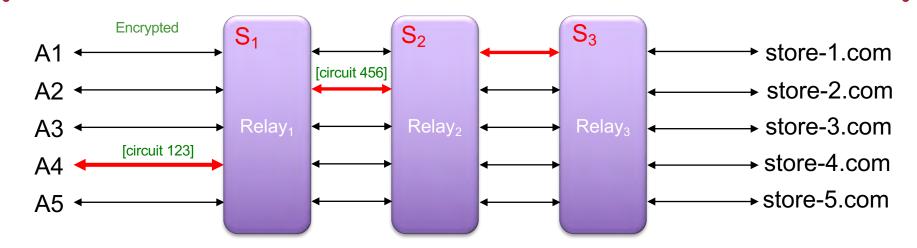
Setting up a circuit – first relay

- Alice connects to Relay1
 - Sets up a TLS link to Relay₁
 - Does a one-way authenticated key exchange with Relay₁ agree on a symmetric key, S₁
 - Alice picks a circuit ID (e.g., 123) and asks Relay1 to create the circuit


Setting up a circuit – extend to second relay

Alice extends the relay to Relay₂

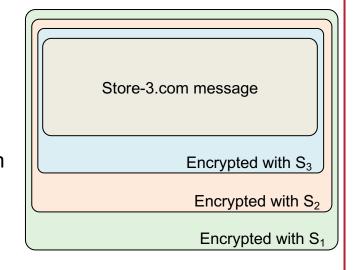
- Alice sends a message to Relay₁:
 - 1st part = "on circuit 123, send **Relay Extend** to Relay₂ the message is encrypted with S_1
- Relay₁ establishes a TLS link to Relay₂ (if it didn't have one)
- 2nd part of the message from Alice: initial handshake with Relay₂, encrypted with Relay₂'s public key
- Relay₂ picks a random circuit for identifying this data stream to Relay₂, e.g., 456
 - Circuit 123 on Relay₁ connects to Circuit 456 on Relay₂
- Does a one-way authenticated key exchange with Relay₂ agree on a symmetric key, S₂
 - All traffic flows through Relay₁ and is encrypted with S₁


Setting up a circuit – extend to third relay

Alice extends the relay to Relay₃

- Same process Alice sends a Relay Extend message to Relay₂
- Alice's messages to Relay₂ are encrypted with S_2 and then with S_1 $E_{S1}(E_{S2}(M))$
- Relay₁ decrypts the message to identify its circuit (123)
- Routes message to Relay₂ on circuit 456
 - Circuit 123 is connected to circuit 456

Sending a message via the circuit



Alice sends a message to store-3.com

Each router strips off a layer of encryption

At the end:

- Directive to S₃ to open a TCP connection to store-3.com
- Send messages
- Get responses

Not a VPN – more like a TLS session

- Neither IP nor TCP packets are transmitted in the message
 - Just data streams
 - It would be too easy to identify the type of system by looking at TCP formats and responses
- Just take contents of TCP streams and relay the data
- End-to-end TLS between source and destination works fine
 - TLS sits on top of TCP ... it's just data going back and forth

Finding nodes

- Ideally, everyone would use some of the same nodes
 - Otherwise traffic would be distinguishable
- Multiple trusted parties supply node lists
 - Merge lists together
 - <u>Union</u>: if popularity-based, danger of someone flooding a list of nodes to capture traffic
 - Intersection: someone can block out nodes
 - Multiple parties vote on which nodes are running and behaving well
 - Distributed consensus
- Clients get list of nodes and their public keys

Is it anonymous?

- Not really
- You may be able to do a correlation attack
 - ISPs know who's talking to whom
 - May need to access logs from multiple ISPs
 - Can be <u>really difficult</u> if nodes have a lot of traffic (and it's similarly dense)
- Compromised exit node
 - Exit node decrypts the final layer and contacts the service

Some problems

Searching is difficult

- Search engines, such as Grams, often give bad results
- Hidden Wiki (http://thehiddenwiki.org) Directory of Tor .onion sites
 - Often full of bad links

Users are the weakest link

- Sites constantly changing addresses to avoid DDoS attacks
- Lots of scammers
- Honeypots set up by law enforcement
- Many ISPs block access to Tor

Sites can get found & shut down

- Silk Road 2.0: shut down by the FBI & Europol on Nov 6 2014
- Silk Road 3.0: went offline due to loss of funds in 2017
- AlphaBay (largest source of contraband): shut down in July 2017
- Hansa Market (competitor to AlphaBay): also shut down in 2017 by Dutch police

Hidden Wiki .onion Urls Tor Link Directory

Category: / Tags: no tag / Add Comment

To browse .onion Deep Web links, install Tor Browser from http://torproject.org/

Hidden Service lists and search engines

http://3g2upl4pq6kufc4m.onion/ - DuckDuckGo Search Engine

http://xmh57jrzrnw6insl.onion/ - TORCH - Tor Search Engine

```
http://gc7ilonwpv77gibm.onion/ - Western Union Exploit
```

http://3dbr5t4pygahedms.onion/ - ccPal Store

http://y3fpieiezy2sin4a.onion/ - HQER - High Quality Euro Replicas

http://gkj4drtgvpm7eecl.onion/ - Counterfeit USD

http://nr6juudpp4as4gjg.onion/pptobtc.html - PayPal to BitCoins

http://nr6juudpp4as4gjg.onion/doublecoins.html - Double Your BitCoins

http://lw4ipk5choakk5ze.onion/raw/4588/ - High Quality Tutorials

Marketplace Commercial Services

http://6w6vcynl6dumn67c.onion/ - Tor Market Board - Anonymous Marketplace Forums

http://wvk32thojln4gpp4.onion/ - Project Evil

http://5mvm7cg6bgklfjtp.onion/ - Discounted electronics goods

http://lw4ipk5choakk5ze.onion/raw/evbLewgkDSVkifzv8zAo/ - Unfriendlysolution - Legit

hitman service

I2P and Garlic Routing

I2P = Invisible Internet Project

- Tor uses "onion routing"
 - Each message from the source is encrypted with one layer for each relay

Garlic routing

- Combines multiple messages at a relay
- All messages, each with its own delivery instructions going to one relay are bundled together
- Makes traffic analysis more difficult
- Tor circuits are <u>bidirectional</u>: responses take the same path
- I2P "tunnels" are unidirectional
 - One for outbound and one for inbound: the client builds both
 - Sender gets acknowledgement of successful message delivery

Services on top of I2P

- I2PTunnel: TCP connectivity
- Chat via IRC (Internet Relay Chat)
- File sharing
 - BitTorrent
 - iMule (anonymous file sharing)
 - I2Phex: Gnutella over I2P
- I2P-Bote: decentralized, anonymized email
 - Messages signed by the sender's private key
 - Anonymity via I2P and variable-rate delays
 - Destinations are I2P-Bote addresses
- I2P-Messenger, I2P-Talk
- Syndie: Content publishing (blogs, forums)

Status

- Tor: far more users (currently) → more anonymity
 - Focused on anonymous access to services
- I2P: focuses on anonymous hosting of services
 - Uses a distributed hash table (DHT) for locating information on servers and routing
 - Server addressing
 - Uses cryptographic ID to identify routers and endpoint services

How do you communicate if the government monitors the Internet ... or the Internet is not available?

Peer-to-peer communication

- This was the problem the 2019 Hong Kong pro-democracy protesters faced
- Solution:
 - Use a peer-to-peer mesh network that does not use the Internet
 - Discover neighbors who are running routing software via Bluetooth
 - Messages hop from phone to phone until they find their target
 - Supports private as well as broadcast messages
- The solution was previously used to enable people to communicate at sporting events & concerts

the Bridgefy app were up almost 4,000% over 60 days between July and Sept 2019

Downloads for

Also useful in areas hit by storms where Internet infrastructure is down

