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Original Browser

• Static content on clients

• Servers were responsible for dynamic parts

• Security attacks were focused on servers
– Malformed URLs, buffer overflows, root paths, unicode attacks
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Today’s Browsers
Complex!

• JavaScript – allows code execution
– NaCl – run native code inside a browser (sandboxed)
– WebAssembly – virtual machine (like JVM) code

• Document Object Model (DOM) – change appearance of page

• XMLHttpRequest (AJAX) – asynchronously fetch content

• WebSockets – open interactive communication session between 
JavaScript on a browser and a server

• Multimedia support - <audio>, <video>, <track>
– MediaStream recording (audio and video), speech recognition & synthesis

• Geolocation
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WebAssembly (Wasm)
• WebAssembly allows for execution of compiled code

• Simple, stack-based virtual machine
– Sandboxed & designed with security in mind … but so was Java
– Control flow hijacks and heap buffer overflows have been demonstrated

• Harder to detect malware & more opportunities to disguise malware

• Has been great for cryptominers
– Malicious web pages can run cryptomining software far more efficiently than 

with JavaScript

• No mechanism for a browser to check the integrity of the downloaded 
code
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Complexity creates a huge threat surface
• More features → more bugs

• Browsers experienced a rapid introduction of features

• Browser vendors don’t necessarily conform to all specs

• Check out
quirksmode.org
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Multiple sources
• Most desktop & mobile apps come from one place

– They may use external libraries, but those are linked in and tested

• Web apps usually have components from different places

• E.g., www.cnn.com has
– Fonts from cdn.cnn.com
– Images from turner.com, outbrain.com, bleacherreport.net, chartbeat.net
– Scripts from amazon-adsystem.com, rubiconproject.com, bing.com, krxd.net, 

gigya.com, krxd.net, livefyre.com, fyre.co, optimizely.com, facebook.net, 
cnn.com, criteo.com, outbrain.com, sharethrough.com, doubleclick.net, 
googletagservices.com, ugdturner.com

– XMLHttpRequests from zone-manager.izi, optimizely.com, chartbeat.com, 
cnn.io, rubiconproject.com

– Other content from scorecardresearch.com, imnworldwide.com, 
facebook.com
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What should code on a page have access to?
• Can analytics code access JavaScript variables from a script loaded 

from jQuery.com on the same page?
– Scripts are from different places 

… but the page author selected them so shouldn’t that be OK?

• Can analytics scripts interact with event handlers?

• How about embedded frames?
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Background: Frames and iFrames

• Browser window may contain frames from different sources
– Frame = rigid division as part of frameset
– iFrame = floating inline frame

• Why use them?
– Delegate screen area to content from another source
– Browser provides isolation based on frames
– Parent can continue to function even if frame is broken
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Web security policy goals

• Safe to visit an evil web site

• Safe to visit two pages at one time
– Address bar distinguishes them

• Allow safe delegation
– Frame inside a frame
– Each frame = origin of the content within it

• Enforce same-origin policy: a.com cannot access b.com’s content
b.com cannot access a.com’s content
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Same-origin Policy
Web application security model: same-origin policy

A browser permits scripts in one page to access data
in a second page only if both pages have the same origin

Origin = { URI scheme, hostname, port number }

• Same origin
– http://www.poopybrain.com/419/test.html
– http://www.poopybrain.com/index.html

• Different origin
– https://www.poopybrain.com/index.html – different URI scheme (https)
– http://www.poopybrain.com:8080/index.html – different port
– http://poopybrain.com/index.html – different host
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Goals of the same-origin policy
• Each frame is assigned the origin of its URL

• Each origin access to its own client-side resources
– Cookies: simple way to implement state (name, value sets of data)

• Browser sends cookies associated with the origin
– DOM storage: key-value storage per origin
– JavaScript namespace: functions & variables
– DOM tree: JavaScript version of the HTML structure

• JavaScript code executes with the authority of its frame’s origin
– If cnn.com loads JavaScript from jQuery.com, the script runs with the authority 

of cnn.com

• Passive content (CSS files, images) has no authority
– It doesn’t (and shouldn’t) contain executable code
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Can two different frames communicate?
• Generally, no – they’re isolated if they’re not the same origin

• But postMessage() allows two independent frames to communicate

• Both sides have to opt in
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Mixed content: http & https
• HTTPS page may contain HTTP content:

<script src="http://www.mysite.com/script.js"> </script>
– Active network attacker may now hijack the session
– Content over the network is plain text

• Safer approach: don’t specify the scheme (http or https)
<script src="//www.mysite.com/script.js"> </script>
– Served over the same protocol as the embedding page (frame)

• Some browsers warn you of mixed content
– Some warning may be unclear to the user
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Passive content has no authority
Makes sense … but why does it matter?

Usually no … but …

MIME sniffing attack
– Chance of security problems if browser parses object incorrectly
– Old versions of IE would examine leading bytes of object to fix wrong file 

types provided by the user
– Suppose a page contained passive content from an untrusted site
– Attacker could add HTML & JavaScript to the content

• IE would reclassify the content
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Cross-origin weirdness
• Images

– A frame can load images from anywhere
– But … same-origin policy does not allow it to inspect the image
– However, it can infer the size of the rendered image

• CSS
– A frame can embed CSS from any origin but cannot inspect the text in the file
– But:

It can discover what the CSS does by creating DOM nodes and seeing how 
styling changes

• JavaScript
– A frame can fetch JavaScript and execute it … but not inspect it
– But … you can call myfunction.toString() to get the source
– Or … just download the source via a curl command and look at it
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Cross-Origin Resource Sharing (CORS)
• Browsers enforce the same-origin policy

– JavaScript can only access content from the same origin
• Images, CSS, iframes within the page, embedded videos, other scripts, …
• It cannot make asynchronous requests to other origins

(e.g.,via XMLHttpRequest) 

• But a page will often contain content from multiple origins
– Images, CSS, scripts, iframes, videos

• CORS allows a server to define other origins
(e.g., another domain name) as being equivalent

– Example, a server at service.example.com may respond with

Access-Control-Allow-Origin: http://www.example.com

– Stating that it will treat www.example.com as the same origin
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Cookies
• Mechanism created to allow websites to manage browser state

– Cookies: <name, value> data stored in the browser

• Cookies are identified with a domain & a path
pk.org/419

All paths in the domain have access to the cookie

• Set at the client or server
– JavaScript can set a cookie on the browser:

document.cookie = “username=paul”;
– Server can tell the browser to set a cookie by sending them in the HTTP header

Set-Cookie: username=paul

When a browser generates an HTTP request it sends all matching cookies
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Common uses for cookies
• Authentication cookies

– Track whether a user is logged into a site
– Upon successful login, the server sends a session ID cookie
– This is sent with every future request to the site so it knows you’re logged in
– Allows sites like Amazon, eBay, Instagram, Facebook to not prompt you for 

repeated logins

• Tracking cookies
– Websites don’t need cookies to track you – they can look at logs
– Cookies make it easier

• Server creates a cookie containing a random ID when someone visits a page 
• The cookie is sent to every page you visit on the site
• Server can build up a list of pages you visit correlated with your ID

– It will be random if you’re not logged in – but can be correlated when you do log in



Third-party cookies: tracking
Third-party cookies: cookie that belongs to a domain other than the one 
on your URL bar

Common with pages containing content from other sides, such as banner 
ads

Because it belongs to the tracker’s domain
– … the cookie will be sent whenever you visit any other website that uses the 

same tracking server
– The website will see the same ID in the cookie so it can correlate what sites 

you visited

Most browsers allow you to block third-party cookes
– But trackers find ways to track you without using cookies



Cookies
• Cookies are often used to track server sessions

– If malicious code can modify the cookie or give it to someone else, an 
attacker may be able to
• View your shopping cart
• Get or use your login credentials
• Have your web documents or email get stored into a different account

• HttpOnly flag: disallows scripts from accessing the cookie
– Sent in a Set-Cookie HTTP response header

• Secure flag: send the cookie only if there is an https session
Set-Cookie: username=paul; path=/; HttpOnly; Secure
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Cross-Site Request Forgery (XSRF)
• A browser sends cookies for a site along with a request

• If an attacker gets a user to access a site
… the user’s cookies will be sent with that request

• If the cookies contain the user’s identity or session state
– The attacker can create actions on behalf of the user

• Planting the link
– Forums or spam

http://mybank.com/?action=transfer&amount=100000&to=attacker_account
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Cross-Site Request Forgery (XSRF)

Defenses
– Validate the referrer header at the server
– Require unique tokens per request 

• Add randomness to the URL that attackers will not be able to guess
• E.g., legitimate server can set tokens via hidden fields instead of cookies

– Default-deny browser policy for cross-site requests
(but may interfere with legitimate uses)
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Screen sharing attack
• HTML5 added a screen sharing API

• Normally: no cross-origin communication from client to server

• This is violated with the screen sharing API
– If a frame is granted permission to take a screenshot, it can get a screenshot 

of the entire display (monitor, windows, browser)
– Can also get screenshots within the user’s browser without consent

• User might not be aware of the scope of screen sharing

http://dl.acm.org/citation.cfm?id=2650789

http://mews.sv.cmu.edu/papers/oakland-14.pdf
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Input sanitization
Remember SQL injection attacks?

• Any user input must be parsed carefully

<script> var name = “untrusted_data”; </script>

• Attacker can set untrusted_data to something like:

hi”; </script> <h1>Hey, some text!</h1> <script> malicious code …

• Sanitization should be used with any user input that may be part of
– HTML
– URL
– JavaScript
– CSS
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Shellshock attack 
Privilege escalation vulnerability in bash

– Function export feature is buggy, allowing functions defined in one instance of 
bash to be available to other instances via environment variable lists

• Discovered in 2014 … but existed since 1989!

• Web servers using CGI scripts (Common Gateway Interface)
– HTTP headers get converted to environment variables
– Command gets executed by the shell via system()

• Bogus function definition in bash
– Bash gets confused while parsing function definitions and executes the 

second part (“echo vulnerable”), which could invoke any operation

env x='() { :;}; echo vulnerable' bash -c "echo this is a test"
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Cross-Site Scripting (XSS)
Code injection attack

• Allows attacker to execute JavaScript in a user’s browser

• Exploit vulnerability in a website the victim visits
– Possible if the website includes user input in its pages
– Example: user content in forums (feedback, postings)

• What’s the harm?
– Access cookies related to that website
– Hijack a session
– Create arbitrary HTTP requests with arbitrary content via XMLHtttpRequest
– Make arbitrary modifications to the HTML document by modifying the DOM
– Install keyloggers
– Download malware – or run JavaScript ransomware
– Try phishing by manipulating the DOM and adding a fake login page
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Types of XSS attacks
• Reflected XSS

– Malicious code is not stored anywhere
• It is returned as part of the HTTP response
• Only impacts users who open a malicious link or third-party web page
• Attack string is part of the link

– Web application passes unvalidated input back to the client
The script is in the link and is returned in its original form & executed

• Persistent XSS
– Website stores user input and serves it back to other users at a later stage
– Victims do not have to click on a malicious link to run the payload
– Example: forum comments

www.mysite.com/login.asp?user=<script> malicious_code(…) </script>

November 29, 2019 CS 419 © 2019 Paul Krzyzanowski 27



XSS Defenses
• One of the problems in preventing XSS is character encoding

– Filters might check for “<script>” but not “%3cscript%3e”

• Key defense is sanitizing ALL user input
– E.g., Django templates: <b> hello, {{name}} </b>

• Use a less-expressive markup language for user input
– E.g., markdown

• Privilege separation
– Use a different domain for untrusted content

• E.g., googleusercontent.com for static and semi-static content
• Limits damage to main domain

• Content Security Policy (CSP)
– Designed to prevent XSS & clickjacking
– Allows website owners to identify approved origins of content & types of content
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SQL Injection & pathnames
We examined these earlier

SQL Injection

• Many web sites use a back-end database

• Links contain queries mixed with user input

query = “select * from table where user=” + username

Pathnames

• Escape the HTML directory

//mysite/images/../../../etc/shadow
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Homograph attacks
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Unicode confusion
Unicode represents virtually all the worlds glyphs

Some symbols look the same (or similar) but have different values

Potential for deception
They’re totally different to software but look the same to humans

/ = solidus (slash) = U+002F
⁄ = fraction slash = U+2044
⁄  = division slash = U+2215
̷  = combining short solidus overlay = U+0337
̸  = combining long solidus overlay = U+0338
／ = fullwidth solidus = U+FF0F

Yuck!
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Paul ≠ ΡаυI
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Paul ≠ ΡаυI
This is an uppercase i

This is a Cyrillic a

This is a Greek P

This is a Greek υ (upsilon)
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Homograph (Homoglyph) Attacks
• Some characters may look alike:

– 1 (one), l (L), I (i)
– 0 (zero), O

• Homograph attack = deception
– paypal.com vs. paypaI.com (I instead of L)

• It got worse with internationalized domain names (IDN)
– wіkіреdіа.org

• Cyrillic a (U+0430), e (U+435), p (U+0440)
• Belarusian-Ukrainian i (U+0456)

– Paypal
• Cyrillic P, a, y, p, a; ASCII l
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https://en.wikipedia.org/wiki/IDN_homograph_attack

Check out the Homoglyph Attack Generator at
https://www.irongeek.com/homoglyph-attack-generator.php
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Network addresses
• A frame can send http & https requests to hosts that match the origin

• The security of same origin is tied to the security of DNS
– Recall the DNS rebinding attack

• Register attacker.com; get user to visit attacker.com
• Browser generates request for attacker.com
• DNS response contains a really short TTL
• After the first access, attacker reconfigures the DNS server

– Binds attacker.com to the victim’s IP address

– JavaScript on a site can fetch a new object from a different address
• Web browser only sees the domain name and thinks request goes to an external site
• Really, it goes to a server in the victim’s network

– The attacker can access data within the victim’s servers and send data back 
to an attacker’s site … all by dynamically changing the name-address 
mapping
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Network addresses
• Solution – no foolproof solutions

– Don’t allow DNS resolutions to return internal addresses
– Force longer TTL even if the DNS response has a short value
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Images
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Clickjacking
• Attacker overlays an image to trick a user to clicking a button or link

• User sees this

• Not realizing there’s an invisible frame over the image

• Clicking there could generate a Facebook like
… or download malware
… or change security settings for the Flash plugin

• Defense
– JavaScript in the legitimate code to check that it’s the top layer

window.self == window.top
– Set X-Frame-Options to not allow frames from other domains
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GIFAR attack
• Java applets are sent as JAR files

– This is just a zip format
– Header is stored at the end of the file

• GIF files are images
– Header is stored at the beginning of the file

• We can combine the two files: gif + jar

• GIFAR attack
– Submit a GIFAR file (myimage.gif) to a site that only allows image uploads
– Use XSS to inject <applet archive:”myimage.gif”>
– Code will run in the context of the server

• Attacker gets to run with the authority of the origin (server)
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HTML image tags

• Images are static content with no authority

• Any problems with images?
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<img src="http://pk.org/images/balloons.jpg" height="300" width="400"/>
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HTML image tags

• URL may pass arguments
– Communicate with other sites

• Hide resulting image
<img src="…" height="1" width="1"/>
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<img src="http://evil.com/images/balloons.jpg?extra_information"
height="300" width="400"/>

Common way for a sender to 
force HTML-formatted email 
to provide read notifications
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Almost 25% of mail messages contain a tracking link. Of popular sending 
domains, about 50% perform tracking



Example tracking pixel

• Origin = www.facebook.com

• Accessing the web page with this pixel will
– Contact Facebook to get the “value”
– Send Facebook cookies from your browser to Facebook
– Enable Facebook to record the fact that you visited this page
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<img height="1" width="1" style="display:none”
src="https://www.facebook.com/tr?id=156391275199118&amp;ev=PageView&amp;noscript=1"/>
s



Deception via image tags

Social engineering: add logos to fool a user
– Impersonate site
– Impersonate credentials
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Encrypted sessions &
Authenticating the server
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HTTP communication

• The web uses HTTP: Hypertext Transfer Protocol

• Like many IP-based protocols, HTTP sends contents as 
plain text
– No validation that you are talking to the legitimate server
– No encryption of content
– No assurance that content is not modified

• DNS or DHCP attacks
– Can get you to connect to the wrong server

• An eavesdropper can
– See all requests & responses
– Including cookies (which may contain login session IDs)
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HTTP vs. HTTPS

• SSL/TLS provide a way to add authenticated, encrypted 
communications with integrity assurance over any TCP 
service

• This enables the creation of “secure” versions of protocols
– ftp → sftp file transfer protocol
– rcp → scp remote copy
– http → https hypertext transfer protocol

• HTTPS is just HTTP over an TLS session
– Optional server authentication (server provides certificate)
– Symmetric data encryption with forward secrecy
– MAC for message integrity

November 29, 2019 CS 419 © 2019 Paul Krzyzanowski 46



Secure ≠ trustworthy

• HTTPS is a good thing!

• Browsers would display a padlock icon to tell a users that 
their session is over a secure link (TLS)

• This gave users a false sense of security
– It does not mean that you are not talking to a phishing site
– Anyone can get a certificate and create a website

• E.g., gooogle.com, g00gle.com
– A large % of phishing sites will present the TLS padlock icon
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Extended Validation Certificates
For SSL/TLS authentication to be meaningful, the server's X.509 
certificate must belong to the party the user believes it belongs to

• Domain validated certificates
– Only require proof of domain control – prove the site has the private key
– Do not prove that a legal entity has a relationship with the domain

• Extended validation (EV) certificates
– Belong to the legal entity controlling the domain (or software)
– Certificate Authority must validate the entity's identity

• More stringent validation: check company incorporation, domain registration, position 
of applicant, etc.
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Extended Validation Certificates
EV certificate will contain

– Government-registered serial 
number

– Physical address

– + the usual stuff: name, 
location, issuer, …
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Extended Validation Certificates
• Browsers would show a lock icon for any SSL/TLS connection

• Modern browsers 
– Identify & validate EV certificates
– Present a security indicator that identifies the certificate owner
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Can You Trust the Browser Status Bar?

Mouseover on a link shows link target

Trivial to spoof with JavaScript

<a href="http://www.paypal.com/signin"
onclick="this.href = 'http://www.evil.com/';">
PayPal</a>
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https://www.paypal.com/signin/
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The situation is not good
• HTML, JavaScript, and CSS continue to evolve

• All have become incredibly complex

• Web apps themselves can be incredibly complex, hence buggy

• Web browsers are forgiving
– You don’t see errors
– They try to correct syntax problems and guess what the author meant
– Usually, something gets rendered
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The end
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