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Communicating with symmetric cryptography

• Both parties must agree on a secret key, K
• Message is encrypted, sent, decrypted at other side

Key distribution must be secret
– Otherwise messages can be decrypted
– Users can be impersonated

Alice

EK(P) DK(C)

Bob
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Problems
Key Distribution
• How do you communicate with someone you’ve never met?

• You cannot send them the secret key
if the communication line is not secure

Key Management
• Potentially a lot of keys to track

• Every group of users
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Key Distribution

Secure key distribution is the biggest 
problem with symmetric cryptography
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Public Key Cryptography
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Public-key algorithm
Two related keys.

C = EK1(P) P = DK2(C)

C’ = EK2(P) P = DK1(Cʹ)

Examples:
RSA, Elliptic curve algorithms 
DSS (digital signature standard)
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K1 is a public key
K2 is a private key
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Trapdoor functions
• Public key cryptography relies on trapdoor functions

• Trapdoor function
– Easy to compute in one direction
– Inverse is difficult to compute without extra information

• Example:
– 96171919154952919 is the product of two prime #s

What are they?

– But if you’re told that one of them is 100225441
– then it’s easy to compute the other: 959555959

October 23, 2020 CS 419 © 2020 Paul Krzyzanowski 8



RSA Public Key Cryptography
Ron Rivest, Adi Shamir, Leonard Adleman created the first public key 
encryption algorithm in 1977

Each user generates two keys:
Private key (kept secret)
Public key (can be shared with anyone)

Difficulty of algorithm based on the difficulty of factoring large numbers
Keys are functions of a pair of large (~300 digits) prime numbers
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RSA algorithm: key generation
1. Choose two random large prime numbers p, q

2. Compute the product   n = pq and 𝜙 = (p - 1)(q - 1)
n is part of the private key. Length(n) is the key length

3. Choose the public exponent, e, such that:
1 < e < 𝜙 and gcd(e, 𝜙) = 1
[ e and (p - 1)(q - 1) are relatively prime ]

4. Compute the secret exponent, d such that:
ed = 1 mod 𝜙
d  = e-1 mod ((p - 1) (q - 1))

5. Public key = (e, n) 
Private key = (d, n)
Discard p, q, 𝜙
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See https://www.di-mgt.com.au/rsa_alg.html



RSA Encryption

Key pair: public key = (e, n)
private key = (d, n)

Encrypt
– Divide data into numerical blocks < n
– Encrypt each block:

c = me mod n
Decrypt

m = cd mod n
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RSA security
The security of RSA encryption rests on the difficulty of factoring a 
large integer

Public key = { modulus, exponent }, or {n, e}

• The modulus is the product of two primes, p, q

• The private key is derived from the same two primes
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Elliptic Curve Cryptography
Alternate approach: elliptic curves

y2 = x3 + ax + b

Using discrete numbers, pick
– A prime number as a maximum (modulus)
– A curve equation
– A public base point on the curve
– A random private key 
– Public key is derived from the private key,

the base point, and the curve

To compute the private key from the public,
– We would need an elliptic curve discrete logarithm function
– This is difficult and is the basis for ECC’s security
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Catalog of elliptic curves
https://en.wikipedia.org/wiki/Elliptic_curve



ECC vs. RSA
• RSA is still the most widely used public key cryptosystem
– Mostly due to inertia & widespread implementations
– Faster for decryption
– Simpler implementation

• ECC offers higher security with fewer bits than RSA
– ECC is faster for key generation & encryption
– Uses less memory
– NIST defines 15 standard curves for ECC
• But many implementations support only a couple (P-256, P-384)

14

http://https://www.enisa.europa.eu/publications/algorithms-key-size-and-parameters-report-2014
https://www.keylength.com/en/4/
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Key length
Unlike symmetric cryptography, not every number is a valid key with RSA and 
ECC

Comparable complexity:
– 3072-bit RSA = 256-bit elliptic curve = 128-bit symmetric cipher
– 15360-bit RSA = 521-bit elliptic curve = 256-bit symmetric cipher 

For long-term security
The European Union Agency for Network and Information Security (ENISA) and the National 
Institute for Science & Technology (NIST) recommend:
– AES: 256-bit keys RSA: 15,360-bit keys ECC:  512 bit-keys
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Communication with public key algorithms
Different keys for encrypting and decrypting
– No need to worry about key distribution
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EB(P) Db(C)

Alice Bob
Alice’s public key: KA

Bob’s public key: KB

Da(C) EA(P)

decrypt message with
Alice’s private key

encrypt message with
Alice’s public key

encrypt message with
Bob’s public key

decrypt message with
Bob’s private key

Communication with public key algorithms
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(Alice’s private key: Ka) (Bob’s private key: Kb)
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RSA isn’t good for communication
Calculations are very expensive relative to symmetric algorithms
Common speeds:

AES ~1500x faster to decrypt; 40x faster to encrypt than RSA
If anyone learns your private key, they can read all your messages
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Algorithm Bytes/sec
AES-128-ECB 148,000,000
AES-128-CBC 153,000,000
AES-256-ECB 114,240,000
RSA-2048 encrypt 3,800,000
RSA-2048 decrypt 96,000



Key Exchange
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Diffie-Hellman Key Exchange
Key distribution algorithm
– Allows two parties to share a secret key over a non-secure channel

– Not public key encryption

– Based on difficulty of computing discrete logarithms in a finite field compared 
with ease of calculating exponentiation

Allows us to negotiate a secret common key without fear of 
eavesdroppers
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Diffie-Hellman Key Exchange
• All arithmetic performed in a

field of integers modulo some large number

• Both parties agree on
– a large prime number p
– and a number a < p

• Each party generates a public/private key pair

Private key for user i:  Xi

Public key for user i:  Yi =

21

piX moda
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Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice sends Bob public key YA

• Alice computes

• Bob has secret key XB

• Bob sends Alice public key YB

K = (Bob’s public key) (Alice’s private key) mod p
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pYK AX
B mod=
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Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice sends Bob public key YA

• Alice computes

• Bob has secret key XB

• Bob sends Alice public key YB

• Bob computes

K’ = (Alice’s public key) (Bob’s private key) mod p
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pYK BX
A mod=pYK AX

B mod=
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Diffie-Hellman exponential key exchange
• Alice has secret key XA

• Alice sends Bob public key YA

• Alice computes

• expanding:

• Bob has secret key XB

• Bob sends Alice public key YB

• Bob computes

• expanding:

K is a common key, known only to Bob and Alice

K = K’
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pYK AX
B mod= pYK BX

A mod=

pp AB XX mod)mod(a=

pYK AX
B mod=

pABXX moda=

pYK BX
B mod=

pp BA XX mod)mod(a=

pBAXX moda=
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Hybrid Cryptosystems
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Hybrid Cryptosystems
• Session key: randomly-generated key for one communication session

• Use a public key algorithm to send the session key

• Use a symmetric algorithm to encrypt data with the session key

Public key algorithms are almost never used to encrypt messages
– MUCH slower; vulnerable to chosen-plaintext attacks
– RSA-2048 approximately 55x slower to encrypt and 2,000x slower to decrypt 

than AES-256
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K EB(K)

Alice Bob

Bob’s public key: KB

encrypt session key with
Bob’s public key

K = Db(EB(K))

October 23, 2020 CS 419 © 2020 Paul Krzyzanowski 27

Communication with a hybrid cryptosystem

Pick a random session key, K

K

Bob decrypts K with
his private key

Now Bob knows the secret session key, K



EK(P) DK(C)

Alice Bob
Bob’s public key: KB

encrypt message using a
symmetric algorithm and

key K

decrypt message using a
symmetric algorithm and

key K
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Communication with a hybrid cryptosystem

EB(K) K = Db(EB(K))



EK(P) DK(C)

Alice Bob
Bob’s public key: KB

decrypt message using a
symmetric algorithm and

key K

encrypt message using a
symmetric algorithm and

key K
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Communication with a hybrid cryptosystem

EB(K) K = Db(EB(K))

DK(Cʹ) EK(Pʹ)



Forward Secrecy
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Private keys need to be protected

Suppose an attacker steals Bob’s private key
– Future messages can be compromised 
– He can go through past messages & decrypt old session keys

Security rests entirely on the secrecy of Bob's private key
– If Bob's private key is compromised, all recorded past traffic can be decrypted

Pick a session key &
encrypt it with the Bob's public key

Bob decrypts the session key 
with his private key
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Forward Secrecy
Forward secrecy
– Compromise of long-term keys does not compromise past session keys
– There is no one secret to steal that will compromise multiple messages
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Achieving Forward Secrecy
Use ephemeral keys for key exchange + session keys for communication

Diffie-Hellman key exchange is commonly used for key exchange
– Generate a set of keys per session
– Use the derived common key as the encryption/decryption key

… or as a key to encrypt a session key
– Not recoverable as long as private keys are thrown away

Unlike RSA keys, Diffie-Hellman makes key generation simple

Keys must be ephemeral
– Client & server will generate new Diffie-Hellman parameters for each session – all will be thrown away after 

the session
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Diffie-Hellman is preferred over RSA for key exchange to achieve forward 
secrecy – generating Diffie-Hellman keys is a rapid, low-overhead process 



Cryptographic systems: summary
• Symmetric ciphers
– Based on SP-networks = substitution & permutation sequences

• Asymmetric ciphers – public key cryptosystems
– Based on trapdoor functions

Easy to compute in one direction; difficult to compute in the other direction without special 
information (the trapdoor)

• Hybrid cryptosystem
– Pick a random session key
– Use a public key algorithm to send 
– Use a symmetric key algorithm to encrypt traffic back & forth

• Key exchange algorithms (more to come later)
– Diffie-Hellman
– Public key
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Enables secure communication without 
knowledge of a shared secret



Looking ahead
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RSA cryptography in the future
• Based on the difficulty of factoring products of two large primes

• Factoring algorithms get more efficient as numbers get larger
– As the ability to decrypt numbers increases, the key size must therefore grow 

even faster
– This is not sustainable (especially for embedded devices)

• ECC is a better choice for most applications
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Quantum Computers & Cryptography
Once (if) useful quantum computers can be built, they can
– Factor efficiently
• Shor’s algorithm factors numbers exponentially faster
• RSA will not be secure anymore

– Find discrete logarithms & elliptic curve discrete logarithms efficiently
• Diffie-Hellman key exchange & ECC will not be secure
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Not all is bad
Symmetric cryptography is largely immune to attacks
• Some optimizations are predicted: crack a symmetric cipher in time proportional to the square root of the 

key space size: 2n/2 vs. 2n

– Use 256-bit AES to be safe

2016: NSA called for a migration to “post-quantum cryptographic algorithms”
… but no agreement yet on what those will be

July 2020: Narrowed submissions down to 7 finalists & 8 alternates
Quantum-resistant standard expected to be announced in 2020
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Quantum-proofing cryptography
Quantum computing is not faster at everything
There are only four types of algorithms currently identified where quantum computing offers an 
advantage

Researchers are developing algorithms that are based on problems quantum 
computers do not help with
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https://www.scientificamerican.com/article/new-encryption-system-protects-data-from-quantum-computers/

31108953
104910828
3027417464
2376520867
2430217482

1190018662
2598220447
3006531459
804531264
1122428373

Which 3 numbers sum 
to 5656746864?

Example: Add 3 out of a set of 10 numbers
• Give the sum to a friend and ask them to determine 

which numbers were added
• Try this if someone picks 500 out of 1,000 numbers 

with 1,000 digits each



Stay tuned…
• 2016: NSA called for a migration to “post-quantum cryptographic 

algorithms”
– But no agreement yet on what those will be

• July 2020: Narrowed submissions down to 7 finalists & 8 alternates

• Quantum-resistant standard expected to be announced in 2020
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Message Integrity
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McCarthy’s Spy Puzzle (1958)
The setting:

• Two countries are at war

• One country sends spies to the other country

• To return safely, spies must give the border guards a password

Conditions

• Spies can be trusted

• Guards chat – information given to them may leak
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McCarthy’s Spy Puzzle
Challenge
– How can a border guard authenticate a person without knowing the password?

– Enemies cannot use the guard’s knowledge to introduce their own spies
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Solution to McCarthy’s puzzle
Michael Rabin, 1958

• Use a one-way function, B = f (A)
– Guards get B
• Enemy cannot compute A if they know A

– Spies give A, guards compute f(A)
• If the result is B, the password is correct.

• Example function:
– Middle squares
• Take a 100-digit number (A), and square it
• Let B = middle 100 digits of 200-digit result
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One-way functions
• Easy to compute in one direction
• Difficult to compute in the other

Examples:
Factoring:

pq = N EASY
find p,q given N DIFFICULT

Discrete Log:
ab mod c = N EASY
find b given a, c, N DIFFICULT

46

Basis for RSA

Basis for Diffie-
Hellman & Elliptic 
Curve
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Example of a one-way function
Example with an 20-digit number
A = 18932442986094014771
A2 = 358437397421700454779607531189166182441
Middle square, B = 42170045477960753118

Given A, it is easy to compute B
Given B, it is difficult to compute A

“Difficult” = no known short-cuts; requires an exhaustive search
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Cryptographic hash functions
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Cryptographic hash functions
Properties
– Arbitrary length input → fixed-length output

– Deterministic: you always get the same hash for the same message

– One-way function (pre-image resistance, or hiding)
• Given H, it should be difficult to find M such that H=hash(M)

– Collision resistant
• Infeasible to find any two different strings that hash to the same value:

Find M, M’ such that hash(M) = hash(M’)

– Output should not give any information about any of the input
• Like cryptographic algorithms, relies on diffusion

– Efficient
• Computing a hash function should be computationally efficient
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Also called digests or 
fingerprints



Hash functions are the basis of integrity
• Not encryption

• Can help us to detect:
– Masquerading:
• Insertion of message from a fraudulent source

– Content modification:
• Changing the content of a message

– Sequence modification:
• Inserting, deleting, or rearranging parts of a message

– Replay attacks:
• Replaying valid sessions
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Hash Algorithms
Use iterative structure like block ciphers do … but use no key
• Example:
– Secure Hash Algorithm, SHA-1
• Designed by the NSA in 1993; revised in 1995
• US standard for use with NIST Digital Signature Standard (DSS) 
• Produces 160-bit hash values
• Chosen prefix collision attacks demonstrated May 2019

• Successors
– SHA-2 (2001)
• Produces 224, 256, 384, or 512-bit hashes
• Approved for use with the NIST Digital Signature Standard (DSS) 

– SHA-3 (2015)
• Can be substituted for SHA-2
• Improved robustness
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Example: SHA-1 Overview
• Prepare the message
– Append the bit 1 to the message
– Pad message with 0 bits so its length = 448 mod 512
– Append length of message as a 64-bit big endian integer

• Use an Initialization Vector (IV) = 5-word (160-bit) buffer: 
a = 0x67452301  b = 0xefcdab89  c = 0x98badcfe
d = 0x10325476  e = 0xc3d2e1f0

• Process the message in 512-bit chunks
– Expand the 16 32-bit words into 80 32-bit words via XORs & shifts
– Iterate 80 times to create a hash for this chunk
• Various sets of ORs, XORs, ANDs, shifts, and adds

– Add this hash chunk to the result so far
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See https://www.saylor.org/site/wp-content/uploads/2012/07/SHA-1-1.pdf



SHA-2 Overview
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256-bit 
Initialization 
Vector (IV)

512-bits of 
message

Hash 
compression

Next 512-bits 
of message

Hash 
compression

Last 512-bits 
of message

Hash 
compression

256-bit hash
Bits defined by the standard



MD5 • 128 bits
• Linux passwords used to use this
• Rarely used now since weaknesses were found

SHA-1 • 160 bits – was widely used: checksum in Git & torrents
• Google demonstrated a collision attack in Feb 2017 

… Google had to run >9 quintillion SHA-1 computations to complete the attack
... but already being phased out since weaknesses were found earlier

• Used for message integrity in GitHub

SHA-2 Believed to be secure
• Designed by the NSA; published by NIST 
• Variations: SHA-224, SHA-256, SHA-384, SHA-512
• Linux passwords use SHA-512
• Bitcoin uses SHA-256

SHA-3 Believed to be secure
• 256 & 512 bit

Blowfish • Used for password hashing in OpenBSD

3DES • Linux passwords used to use this
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Linux commands
sha1sum: create a SHA-1 hash
echo "hello, world!" | sha1sum
e91ba0972b9055187fa2efa8b5c156f487a8293a -

sha3sum: create a 256-bit SHA-3 hash
echo "hello, world!" | sha3sum
c3d69513b79e0cdf3aa2b4afa38a5ffde144310109029e0e1aa57eb6 -

md5sum: create an MD5 hash
echo "hello, world!" | md5sum
910c8bc73110b0cd1bc5d2bcae782511  -

openssl: create a 512-bit SHA-3 hash (many other options available)
echo "hello, world!" | openssl dgst -sha3-512

(stdin)=8fc33b84ff22559082893fdc73f6877e590eb67533441fe5e48cd6d8a11aaf8
d6270f82ef437c2c758000d65b09b45116b9c0eb3f3162149b13ca98c8cc8c90f
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Hash Collisions
Hashes are collision resistant, but collisions can occur

Pigeonhole principle
– If you have 10 pigeons & 9 compartments,

at least one compartment will have more
than one pigeon

– A hash is a fixed-size small number of bits 
(e.g., 256 bits = 32 bytes)

– Every possible permutation of an arbitrary number 
of bytes cannot fit into every permutation of 32 bytes!
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Collisions: The Birthday Paradox
How many people need to be in a room such that the probability that 
two people will have the same birthday is > 0.5?

Your guess before you took a probability course: 183
This is true to the question of “how many people need to be in a room for the probability that 
someone else will have the same birthday as one specific student?”

Answer: 23

57

𝑝 𝑛 = 1 −
𝑛! ( 365

𝑛
365!

Approximate solution for # people required to have a 0.5 
chance of a shared birthday, where m = # days in a year 𝑛 ≈ 2×𝑚×0.5
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The Birthday Paradox: Implications
• Searching for a collision with a pre-image (known message) is A 

LOT harder than searching for two messages that have the same 
hash

• Strength of a hash function is approximately ½ (# bits) 
– 256-bit hash function has a strength of approximately 128 bits
– But that’s a huge space!

2128 = 3.4×1038

– It’s not feasible to try that many messages in the hope of finding a collision
• BTW … the odds of winning the Powerball lottery are only 1:2.9×108
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Message Integrity
How do we detect that a message has been tampered?

• A cryptographic hash acts as a checksum

• Associate a hash with a message
– we’re not encrypting the message
– we’re concerned with integrity, not confidentiality

• If two messages hash to different values, we know the messages 
are different

H(M) ≠ H(M′)
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Tamperproof Integrity:
Message Authentication Codes and
Digital Signatures
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Message Integrity: MACs
• We rely on hashes to assert the integrity of messages

• An attacker can create a new message & a new hash
and replace H(M) with  H(M′)

• So let’s create a checksum that relies on a key for validation

• Message Authentication Code (MAC)
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Hash-based MAC
We can create a MAC from a cryptographic hash function

HMAC = Hash-based Message Authentication Code

HMAC(m, k) = H((opad ⊕ k) || H(ipad ⊕ k) || m))
Where

H = cryptographic hash function

opad = outer padding 0x5c5c5c5c … (01011100…)

ipad = inner padding 0x36363636… (00110110…)

k = secret key

m = message

⊕ = XOR,   || = concatenation

Basically, incorporate a key into the message before hashing it
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See RFC 2104



Block Cipher Based MAC: CBC-MAC
Cipher Block Chaining (CBC) ensures that every encrypted block is a function of all 
previous blocks

MAC = final ciphertext block – others are discarded

Examples: AES-CBC-MAC, DES-MAC
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Block cipher

Plaintext0IV = 0

Ciphertext0

⊕

Key Block cipher

Plaintext1

⊕

Key

Block 0 Block 1

Block cipher

PlaintextN

⊕

Key

Block N

Ciphertext1 CiphertextN

Don’t use the same key for the MAC as for encrypting the message
If an adversary gets one of the keys, she will be unable to create either a valid message or a valid hash

CBC-MAC uses a 
zero initialization 
vector



Using a MAC

64

Message
m

MAC

HMAC(m, k)

Message
m′

MAC′

Alice Bob

1. Bob receives the Message m’ and a MAC.
2. Knowing the key, k, he generates a MAC for the message: MAC″ = HMAC(m′, k)
3. If MAC′ = MAC″, he’s convinced that the message has not been modified

modification?

MAC″
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Compute HMAC(m′, k):

Both have the shared key, k



Digital Signatures
• MACs rely on a shared key
– Anyone with the key can modify and re-sign a message

• Digital signature properties
– Only you can sign a message, but anyone can validate it

– You cannot cut and paste the signature from one message to another

– If the message is modified, the signature will be invalid

– An adversary cannot forge a signature
• Even after inspecting an arbitrary number of signed messages
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Digital Signature Primitives
1. Key generation

{ secret_key, verification_key } := gen_keys(key_size)

2. Signing
signature := sign(message, secret_key)

3. Validation
Isvalid := verify(verification_key, message, signature)

We sign hash(message) instead of the message
– We’d like the signature to be a small, fixed size
– We may not need to hide the contents of the message
– We trust hashes to be collision-free
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Digital Signatures & Public Key Cryptography 
Public key cryptography enables digital signatures

secret_key = private key
verification_key = public key

• Alice encrypts a message with her private key

S = Ea(M)

• Anyone can decrypt it using her public key

DA(S) = DA(Ea(M)) = M

• Nobody but Alice can create S
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Popular Digital Signature Algorithms
• DSA: Digital Signature Algorithm
– NIST standard – Uses SHA-1 or SHA-2 hash
– Key pair based on difficulty of computing discrete logarithms

• ECDSA: Elliptic Curve Digital Signature Algorithm
– Variants of DSA that uses elliptic curve cryptography
– Used in bitcoin

• EdDSA: Edwards-curve Digital Signature Algorithm 
– Slightly faster than ECDSA

DSA  systems combine hashing + encryption into one step

• signature: S := Epri_key(H(M))

• verification = H(M) ≟ Dpub_key(S) 
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Alice Bob

Alice generates a hash of the message, H(P)
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Digital signatures

H(P)



H(P)

Alice Bob

Alice encrypts the hash with her private key
This is her signature.
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Digital signatures: public key cryptography

S=Ea(H(P))



H(P)

Alice Bob

Alice sends Bob the message & the encrypted hash
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Using Digital Signatures

S=Ea(H(P))

modification?



H(P)

Alice Bob

1. Bob decrypts the hash using Alice’s public key
2. Bob computes the hash of the message sent by Alice
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Using Digital Signatures

S=Ea(H(P))

H(P)

DA(S)

modification?



H(P)

Alice Bob

If the hashes match, the signature is valid
⇒ the encrypted hash must have been generated by Alice
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Using Digital Signatures

S=Ea(H(P))

H(P)

DA(S)

modification?



Digital signatures & non-repudiation

• Digital signatures provide non-repudiation
– Only Alice could have created the signature because only Alice has her private 

key

• Proof of integrity
– The hash assures us that the original message has not been modified
– The encryption of the hash assures us that an attacker could not have

re-created the hash
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Alice Bob

Charles:
• Generates a hash of the message, H(P)
• Decrypts Alice’s signature with Alice’s public key

- Validates the signature: DA(S) ≟ H(P)
• Decrypts Bob’s signature with Bob’s public key

- Validates the signature: DB(S) ≟ H(P) 
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Digital signatures: multiple signers

H(P)

DA(S)

H(P)

S=Ea(H(P)
)

Charles

S’=Eb(H(P))

H(P)

DA(S)
DB(S’)



Covert AND authenticated messaging
If we want to keep the message secret
– combine encryption with a digital signature

Use a session key:

– Pick a random key, K, to encrypt the message with a symmetric algorithm

– Encrypt K with the public key of each recipient

– For signing, encrypt the hash of the message with sender’s private key
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H(P)

Alice

Alice generates a digital signature by
encrypting the message with her private key
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Covert and authenticated messaging

S=Ea(H(M))



H(P)

Alice

Alice picks a random key, K, and encrypts the message P
with it using a symmetric cipher

October 23, 2020 CS 419 © 2020 Paul Krzyzanowski 79

Covert and authenticated messaging

S=Ea(H(M))

C=EK(M)



H(P)

Alice

Alice encrypts the session key for each
recipient of this message using their public keys
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Covert and authenticated messaging

S=Ea(H(M))

K K
C1=EB(K)

K
C2=EC(K)

for Charles

C=EK(M)



H(P)

Alice Bob

The aggregate message is sent to Bob & Charles

Covert and authenticated messaging
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S=Ea(H(P))

K K
C1=EB(K)

K
C2=EC(K)

Message:

Signature:

Sender: Alice

Key for Bob: K

KKey for Charles:

Bob

Charles

Note: we do not have forward secrecy by doing this
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Public Keys as Identities
• A public signature verification key can be treated as an identity
– Only the owner of the corresponding private key will be able to create the signature

• New identities can be created by generating new random 
{private, public} key pairs

• Anonymous identity – no identity management
– A user is known by a random-looking public key
– Anybody can create a new identity at any time
– Anybody can create as many identities as they want
– A user can throw away an identity when it is no longer needed
– Example: Bitcoin identity = hash(public key)
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Certificates: Identity Binding
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Identity Binding
• How does Alice know Bob’s public key is really his?

• Get it from a trusted server?
– What if the enemy tampers with the server?
– Or intercepts Alice’s query to the server (or the reply)?
– What set of public keys does the server manage?
– How do you find it in a trustworthy manner?
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Identity Binding – Another Option
• Have a trusted party sign Bob’s public key

• Once signed, it is tamper-proof

• But we need to know it’s Bob’s public key and who signed it
– Create & sign a data structure that
• Identifies Bob
• Contains his public key
• Identifies who is doing the signing
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X.509 Certificates
ISO introduced a set of authentication protocols

X.509: Structure for public key certificates:

X.509 v3 Digital Certificate

Certificate data Signature

Subject
Distinguished name Public key

(algorithm & key)

version serial # Signature
algorithm

Issuer
Distinguished

Name

Validity
(from-to)

Signature
(signed by CA)

Issuer = Certification Authority (CA)

User’s name, organization, locality, state, country, etc.
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X.509 certificates
To validate a certificate

Verify its signature:
1. Get the issuer (CA) from the certificate
2. Validate the certificate’s signature against

the issuer’s public key
– Hash contents of certificate data
– Decrypt CA’s signature with CA’s public key

Obtain CA’s public key (certificate) from trusted source

Certificates prevent someone from using a phony public key to 
masquerade as another person

…if you trust the CA
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Certification Authorities (CAs)
How do you know the public key of the CA?
– You can get it from another certificate! ⇒ this is called certificate chaining
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Name: Rutgers University CA

Public key: c1f07f8aac9d… 

Issuer: State of NJ CA

Signature: 5c062ee261…

Name: Bob

Public key: abac6cfbd… 

Issuer: Rutgers University CA

Signature: 25d0527b9f…

Name: State of NJ CA

Public key: 33346da91… 

Issuer: US Certification Authority

Signature: e693eac849…

Name: US Certification Authority

Public key: 9f0f544f163… 

Issuer: US Certification Authority

Signature: 20fac7079f0…

Root Certificate



Certification Authorities (CAs)
• But trust must start somewhere

You need a public key you can trust – this is the root certificate
– Apple’s keychain is pre-loaded with hundreds of CA certificates
– Windows stores them in the Certificate Store and makes them accessible via the

Microsoft Management Console (mmc) 
– Android stores them in Credential Storage

• Can you trust a CA?
– Maybe…

check their reputation and read their Certification Practice Statement (CPS)
– Even trustworthy ones might get hacked (e.g., VeriSign in 2010)
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Key revocation
• Used to invalidate certificates before expiration time
– Usually because of a compromised key
– Or policy changes (e.g., someone leaves a company)

• Certificate revocation list (CRL)
– Lists certificates that are revoked
– Only certificate issuer can revoke a certificate

• Problems
– Need to make sure that the entity issuing the revocation is authorized to do this
– Revocation information may not circulate quickly enough
• Dependent on dissemination mechanisms, network delays & infrastructure

– Some systems may not have been coded to process revocations
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Code Integrity
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Review: signed messages
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Message M

Hash(M) Ea(H(M))

Encrypt with Alice’s private key 
= digital signature
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We can sign code as well
• Validate integrity of the code
– If the signature matches, then the code has not been modified

• Enables
– Distribution from untrusted sources
– Distribution over untrusted channels
– Detection of modifications by malware

• Signature = encrypted hash signed by trusted source
– Does not validate the code is good … just where it comes from
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Code Integrity: signed software
• Windows 7-10: Microsoft Authenticode
– SignTool command
– Hashes stored in system catalog or signed & embedded in the file
– Microsoft-tested drivers are signed

• macOS
– codesign command
– Hashes & certificate chain stored in file

• Also Android & iOS
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Code signing: Microsoft Authenticode
• A format for signing executable code (dll, exe, cab, ocx, class files)

• Software publisher:
– Generate a public/private key pair
– Get a digital certificate: VeriSign class 3 Commercial Software Publisher’s certificate
– Generate a hash of the code to create a fixed-length digest
– Encrypt the hash with your private key
– Combine digest & certificate into a Signature Block
– Embed Signature Block in executable

• Microsoft SmartScreen:
– Manages reputation based on download history, popularity, anti-virus results

• Recipient:
– Call WinVerifyTrust function to validate:
• Validate certificate, decrypt digest, compare with hash of downloaded code
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Per-page hashing
• Integrity check when program is first loaded

• Per-page signatures – improved performance
– Check hashes for every page upon loading (demand paging)

• Per-page hashes can be disabled optionally on both Windows and 
macOS
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Windows code integrity checks
• Implemented as a file system driver
– Works with demand paging from executable
– Check hashes for every page as the page is loaded

• Hashes stored in system catalog or embedded in file along with X.509 
certificate

• Check integrity of boot process
– Kernel code must be signed or it won’t load
– Drivers shipped with Windows must be certified or contain a certificate from 

Microsoft
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The End
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