
CS 419: Computer Security

Paul Krzyzanowski © 2020 Paul Krzyzanowski. No part of this
content, may be reproduced or reposted in
whole or in part in any manner without the
permission of the copyright owner.

Week 2: Access Control

Protection is essential to security
• Protection
– The mechanism that provides controlled access of resources to processes
– A protection mechanism enforces security policies

• Protection includes:
– User privileges: access rights to files, devices, and other system resources
– Resource scheduling & allocation
• Process scheduling & memory allocation – Which processes get priority?

– Quotas (sometimes) – set limits on disk space, CPU, network, memory, …

• And relies on
– Mechanisms for user accounts & user authentication – identify who we’re dealing with
– Policies – defining who should be allowed do what
– Auditing: generate audit logs for certain events

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 2

Co-located resources
• Earliest computers – 1945+
– Single-user batch processing – no shared resources
– No need for access control – access control was physical

• Then … batch processing … but no shared storage – 1950s
– Per-process allocation of tape drives, printers, punched card machines, …

• Later … shared storage & timesharing systems – 1960s-now
– Multiple users share the same computer
– User accounts & access control important

• Even later … PCs – 1974 to now
– Back to single-user systems
– … but software & media became less trusted by the 1990s

• Now: networked PCs + mobile devices + IoT devices + …
– Shared access: cloud computing, file servers, university systems
– Need to enforce access control

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 3

Access control
• Ensure that authorized users can do what they are permitted to do …

and no more

• Real world
– Keys, badges, guards, policies

• Computer world
– Hardware
– Operating systems
– Web servers, databases & other multi-access software
– Policies

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 4

Goals
• OS Gives us access to resources:
– CPU
– Memory
– Files & devices
– Network

• We need to:
– Protect the operating system from applications
– Protect applications from each other
– Allow the OS to stay in control

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 5

The OS and hardware are the
fundamental parts of the Trusted Computing Base (TCB)

Hardware timer
• OS kernel requests timer interrupts

• One of several timer devices:
– Programmable Interval Timer (PIT)
– High Precision Event Timer (HPET)
– or Advanced Programmable Interrupt Controller (APIC timer, one per CPU)

• Most current Intel Linux systems use APIC

• Applications cannot disable this

Ensures that the OS can always regain control

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 6

Processes
Timer interrupts ensure OS can examine processes while they are
running

OS Process Scheduler
– Decides whether a process had enough CPU time, and it is time for another

process to run
– Prioritizes threads
• Based on user, user-defined priorities, interactivity, deadlines, “fairness”
• One process should not adversely affect others

– Avoid starvation: ensure all processes will get a chance to run
• This would be an availability attack

7September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Memory Management Unit
• All modern CPUs have a Memory Management Unit (MMU)

• OS provides each process with virtual memory

• Gives each process the illusion that it has the entire address space

• One process cannot see another process’ address space

• Enforce memory access rights
– Read-only (code)
– Read-write (program’s data)
– Execute (code)
– Unmapped

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 8

Page translation

Page number, p Displacement (offset), d

CPU

Logical
address

Physical
address

p d f d
f = page_table[p]

f
f
f
f
f
f
f

Physical memoryPage table

f = page_table[p]

Kernel stores one page
table per process

Virtual memory address

9September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Logical vs. physical views of memory

Page 3

Page 1

Page 0

Page 0

Page 27

6

5

4

3

2

1

0

Frame #

page 0

page 1

page 2

Page 3

4

2

7

-

Page Table 0

Physical Memory

0

1

2

3
Page 3

not
mapped

Page #

10September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

page 0

page 1

page 2

Page 3

Logical Memory – Process 1

Page #

Logical Memory – Process 0

6

–

–

1

Page Table 1

0

1

2

3

User & kernel mode
Kernel mode = privileged, system, or supervisor mode
– Access restricted regions of memory
– Modify the memory management unit by changing the page table register
– Set timers
– Define interrupt vectors
– Halt the processor
– Etc.

• Getting into kernel mode
– Trap: explicit instruction
• Intel architecture: INT instruction (interrupt)
• ARM architecture: SWI instruction (software interrupt)
• System call instructions

– Violation (e.g., access unmapped memory, illegal instruction)
– Hardware interrupt (e.g., receipt of network data or timer)

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 11

Protection Rings
• All modern operating systems support two modes of operation: user & kernel
• Multics defined a ring structure with 6 different privilege levels
– Each ring is protected from higher numbered rings
– Special call (call gates) to cross rings: jump to predefined locations
– Most of OS did not run in ring 0

• Intel x86, IA-32 and IA-64 support 4 rings
• Today’s OSes only use
– Ring 0: kernel
– Ring 3: user

Note: hypervisors (virtual machine
monitors) run at a 3rd privilege level
– In many systems, this is ring -1 for the

hypervisor, 0 for the kernel and 3 for user programs

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 12

https://en.wikipedia.org/wiki/Protection_ring

Subjects, Principals, and Objects
Subject: the thing that needs to access resources

Principal: unique identify for a user
• Subjects may have multiple identities and be associated with a set of principals

User: a human (generally)

Object: the resource the subject may access
– Typically files and devices – they do not perform operations

Subjects access objects: they perform actions on objects

Access control
– Define what operations subjects can perform on objects

Most operating systems define what can be done to different objects
(permissions are associated with each object.

13September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

User authentication
Must be done before we can do access control

• Establish user identity – determine the subject
– Operating system privileges are granted based on user identity

Steps
1. Get user credentials (e.g., name, password)
2. Authenticate user by validating the credentials

– Get user ID(s), group ID(s)
3. Access control: grant further access based on user ID

14September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Domains of Protection

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 15

Domains of protection
• Subjects (users running processes) interact with objects
– Objects include:

hardware (CPU, memory, I/O devices)
software: files, processes, semaphores, messages, signals

• A process should be allowed to access only objects that it is
authorized to access
– A process operates in a protection domain
– It’s part of the context of the process
– Protection domain defines the objects the process may access and how it

may access them

16September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Modeling Protection: Access Control Matrix
Rows: domains

(subjects or groups of subjects)

Columns: objects

Each entry in the matrix represents an
access right of a domain on an object

Objects

do
m

ai
ns

 o
f p

ro
te

ct
io

n F0 F1 Printer

D0 read read-
write

print

D1 read-write-
execute

read

D2 read-
execute

D3 read print

D4 print

17

An Access Control Matrix is the primary abstraction for protection in computer security
September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Su
bj

ec
ts

We may need some more controls
• Domain transfers
– Allow a process to run under another domain’s permissions

• Copy rights
– Allow a user to grant certain access rights for an object

• Owner rights
– Identify a subject as the owner of an object
– Can change access rights on that object for any domain

• Domain control
– A process running in one domain can change any access rights for another domain

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 18

Access Control Matrix: Domain Transfers
Switching from one domain to another is a configurable policy

objects
do

m
ai

ns
 o

f p
ro

te
ct

io
n

F0 F1 Printer D0 D1 D2 D3 D4

D0 read read-
write

print – switch switch

D1 read-
write-

execute

read –

D2 read-
execute

switch –

D3 read print

D4 print

19

A process in D0 can switch
to running in domain D1

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Su
bj

ec
ts

Domain transfers
Allow a process to run under another domain’s permissions

Why? Log a user in – how would you run the first user’s process?

Access Control Matrix: Delegation of Access
Copy rights: allow a user to grant certain rights to others
– Copy a specific access right on an object from one domain to another

do
m

ai
ns

 o
f p

ro
te

ct
io

n F0 F1 Printer D0 D1 D2 D3 D4

D0 read read-
write

print – switch swtich

D1 read-
write-

execute

read* –

D2 read-
execute

swtich –

D3 read print

D4 print

A process executing in
D1 can give a read right
on F1 to another domain

20

objects

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Su
bj

ec
ts

Access Control Matrix: Object Owner
Owner: allow new rights to be added or removed

do
m

ai
ns

 o
f p

ro
te

ct
io

n F0 F1 Printer D0 D1 D2 D3 D4

D0 read
owner

read-
write

print – switch swtich

D1 read-
write-

execute

read* –

D2 read-
execute

swtich –

D3 read print

D4 print

A process executing in
D0 owns F0, so it can
give a read right on F0
to domain D3 and
remove the execute
right from D1

objects

21September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Su
bj

ec
ts

Identify a subject as the owner of an object
Can change access rights on that object for any domain (column)

Access Matrix: Domain Control
• A process running in one domain can change any access rights for another domain

• Change entries in a row (all objects)

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 22

do
m

ai
ns

 o
f p

ro
te

ct
io

n F0 F1 Printer D0 D1 D2 D3 D4

D0 read
owner

read-
write

print – switch switch

D1 read-
write-

execute

read* – control

D2 read-
execute

switch –

D3 read print

D4 print

A process executing in
D1 can modify any
rights in domain D4

objects

Su
bj

ec
ts

This gets messy!
• An access control matrix does not address everything we may want
• Processes execute with the rights of the user (domain)
– But sometimes they need extra privileges
• Read configuration files
• Read/write from/to a restricted device
• Append to a queue

• We don’t want the user to be able to access these objects
– Adding domains to the row of objects is not sufficient
– So we may need a 3-D access control matrix: (subjects, objects, processes)

• This gets messy!
– One solution is to give an executable file a temporary domain transfer
• Assumption is this is a trusted application that can access these resources

– When run, it assumes the privileges of another domain

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 23

Implementing an access matrix
A single table to store an access matrix is impractical

• Big size: # domains (users) × # objects (files)
• Objects may come and go frequently
• Lookup needs to be efficient

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 24

F0 F1 F2 F3 F3 Printer

D0 read
owner

read-
write

read-
execute

read print

D1 read-
write-

execute

read read-
execute

read write

D2 read-
execute

read-
execute

write

D3 read read-
execute

print

D4 read-
execute

write print

Implementing an access matrix
Access Control List
– Associate a column of the table with each object

do
m

ai
ns

 o
f p

ro
te

ct
io

n
objects

ACL for file F0

25September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Su
bj

ec
ts

F0 F1 F2 F3 F3 Printer

D0 read
owner

read-
write

read-
execute

read print

D1 read-
write-

execute

read read-
execute

read write

D2 read-
execute

read-
execute

write

D3 read read-
execute

print

D4 read-
execute

write print

Implementing an access matrix
Capability List
– Associate a row of the table with each domain

do
m

ai
ns

 o
f p

ro
te

ct
io

n
objects

26September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Su
bj

ec
ts

Capability list for domain D1

Capability Lists
Capability list = list of objects together with the operations a specific
subject can perform on the objects

• Each item in the list is a capability: the operations allowed on a
specific object
– Also known as a ticket or access token

• A process presents the capability to the OS along with a request
– Possessing the capability means that access is allowed

• The capability is a protected object
– A process cannot modify its capability list

27September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Capability Lists
• Advantages
– Run-time checking is more efficient
– Delegating rights is easy

• Disadvantages
– Creating or deleting files means updating all capability lists
– Changing a file’s permissions is hard
– Hard to find all users that have access to a resource
– Lists can be huge – the system might have millions of objects

• Not used in mainstream systems in place of ACLs
– Limited implementations: Cambridge CAP, IBM AS/400

• Capability lists are rarely used but capabilities are used
– Used for single sign-on services and other authorization services such as Oauth and Kerberos

(sort of)
– Access Tokens
• Identifies a user’s identity and the access rights permitted on the requested service (not objects!)

28September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 29

POSIX file permissions
Part 2

File permissions
• Access isn’t all or nothing

• Objects can have different access permissions

UNIX permission model
– Access permissions: read (r), write (w), execute (x)
• All independently set

– Each file has an owner

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 30

File A
rw
File B
r
File C
rxAlice

File D
rw
File E
r
File F
rwxBob

Example: Limited ACLs in POSIX systems
• Problem: an ACL takes up a varying amount of space
– Won’t fit in a fixed-size inode

• UNIX Compromise:
– A file defines access rights for three domains:
• the owner, the group, and everyone else

– Permissions
• Read, write, execute, directory search
• Set user ID on execution
• Set group ID on execution

– Default permissions set by the umask system call
– chown system call changes the object’s owner
– chgrp system call changes the object’s group
– chmod system call changes the object’s permissions

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 31

How do you share files?
• Groups & everyone else (other)

• A user has one user ID but may belong to multiple groups
– One current default group ID for new objects
– Multiple groups

• Other = all others (users who are not the owner or group members)

• File access permissions are expressed as:

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 32

rwxrwxrwx

user
group

other
$ ls -l /bin/ls
-rwxr-xr-x 1 root wheel 38624 Dec 10 04:04 /bin/ls

Permission checking
if you are the owner of the file

only owner permissions apply

if you are part of a group the file belongs to
only group permissions apply

else “other” permissions apply

I cannot read this file even if I’m in the localaccounts group:
$ ls -l testfile
----rw---- 1 paul localaccounts 6 Jan 30 10:37 testfile

33September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Execute permission
• Distinct from read

• You may have execute-only access
– This takes away your right to copy the file

… or inspect it
– But the OS can load it & run it

34September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Windows
• Windows has users & groups but more permissions
– Read, write, execute
– Also: delete, change permission, change ownership

• Users & resources can be partitioned into groups & domains
– Each domain can have its own administrator
• HR can manage users
• Individual departments can manage printers

• Trust can be inherited in one or both directions
– Department resources domains may trust the user domain
– User domain may not trust department resources domains

35September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

What about directories?
• Directories are just files that map names to inode numbers

• Permissions have special meaning
– Write = permission to create a file in the directory
– Read = permission to list the contents of a directory
– Execute = permission to search through the directory

• If you have write access to the directory of a file, you can delete the file
– Even if you don’t have write access to the file itself

• If you don’t have write access to the directory
– You cannot create or delete a file … even if you have write access to it

36September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Changing permissions
The chmod command
• Set permissions
$ chmod u=rwx,g=rx,o= testfile
$ ls -l testfile
-rwxr-x--- 1 paul localaccounts 6 Jan 30 10:37 testfile

• Add permissions
$ chmod go+w testfile
$ ls -l testfile
-rwxrwx-w- 1 paul localaccounts 6 Jan 30 10:37 testfile

• Remove permissions
$ chmod o-w testfile
$ ls -l testfile
-r-xrwx--- 1 paul localaccounts 6 Jan 30 10:37 testfile

37

user = read, write, execute
group = read, execute
other = -none-

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Changing permissions
Or the old-fashioned way – specify an octal bitmask

• Set permissions
$ chmod 754 testfile
$ ls -l testfile
-rwxr-xr-- 1 paul localaccounts 6 Jan 30 10:37 testfile

38

7 5 4
111 101 100
rwx r-x r--
user group other

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

File permissions are stored in the file's inode

39

12 Direct block pointers

Direct block

Single Indirect block

Direct block

Indirect block
Double indirect block

Triple indirect block

Data block Data block

Data block

entries =
block size/(4 bytes per block pointer)

File info

inode

Owner id, group id, permissions,
access/creation/modification
times

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Sometimes groups aren’t enough
Access Control Lists (ACL)

• Explicit list of permissions for users

• Supported by most operating systems
– Windows ≥ XP
– macOS ≥ 10.4
– Linux ≥ ext3 file system + acl package

40September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Example: Full ACLs in POSIX systems
What if we want to use a full ACL?
• Extended attributes: stored outside of the inode
– Hold an ACL
– And other name:value attributes

• Enumerated list of permissions on users and groups
– Operations on all objects:
• delete, readattr, writeattr, readextattr, writeextattr, readsecurity, writesecurity, chown

– Operations on directories
• list, search, add_file, add_subdirectory, delete_child

– Operations on files
• read, write, append, execute

– Inheritance controls

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 41

ACLs and ACEs
Access Control List (ACL) = list of Access Control Entries (ACE)

• ACE identifies a user or group & permissions
– Files: read, write, execute, append
– Directories:

list, search, read attributes, add file, add sub-directory, delete contents

• “Inheritance” permission
– Files and directories can inherit ACL entries from the parent

• Wildcards are often supported

• See chmod on macOS or setfacl on Linux

42September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Example ACL
pxk.* rwx

419-ta.* rwx

*.faculty rx

. x

• Users pxk and 419-ta have read-write-execute access

• Users in the faculty group have read-execute access

• Others only have execute access

43September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Search order
ACEs are evaluated in the order they are entered into the ACL

In this case, I don’t have write access to the file:

419-ta.* rwx

*.faculty rx

pxk.* rwx

. x

44

This is me

So is this

So is this

This appears first & has priority

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Search order: ACLs + permissions
In systems like Linux that integrate ACLs with 9-bit permissions:

1. If you are the owner of the file, only owner permissions apply

2. If you are part of a group the file belongs to, only group permissions
apply

3. Else search through the ACL entries to find an applicable entry

4. Else other permissions apply

45September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

macOS Examples

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 46

macOS ACL examples (1)
• Create a file
$ echo hello > hi.txt
$ cat hi.txt
hello

• List the file
– Show ACEs with -e option to ls
$ ls -l hi.txt
-rw-r--r-- 1 paul wheel 6 Sep 13 23:01 hi.txt
$ ls -le hi.txt
-rw-r--r-- 1 paul wheel 6 Sep 13 23:01 hi.txt

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 47

No ACL!

macOS ACL examples (2)
• Take away read & write access
– Add an access control entry with chmod +a

– Remove an access control entry with chmod –a
$ chmod +a "paul deny read,write" hi.txt

• See what we have
$ ls -le hi.txt
-rw-r--r--+ 1 paul wheel 6 Sep 13 23:01 hi.txt
0: user:paul deny read,write

• Add append access
$ chmod +a "paul allow append" hi.txt
$ ls -le hi.txt
-rw-r--r--+ 1 paul wheel 6 Sep 13 23:01 hi.txt
0: user:paul deny read,write
1: user:paul allow append

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 48

ACL

ACL

macOS ACL examples (3)
• Try reading and writing to the file

$ echo "new data" >hi.txt
bash: hi.txt: Permission denied

$ cat hi.txt
cat: hi.txt: Permission denied

• But we can append
$ echo "appended data" >>hi.txt
$ ls –l hi.txt

-rw-r--r--+ 1 paul wheel 20 Sep 13 23:16 hi.txt

• Useful for granting users append-only access to a log file

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 49

It’s bigger: 20 bytes vs. 6

macOS ACL examples (4)
• Remove Access Control Entry #0

$ ls -le hi.txt
-rw-r--r--+ 1 paul wheel 20 Sep 13 23:16 hi.txt

0: user:paul deny read,write
1: user:paul allow append
$ chmod -a# 0 hi.txt
$ ls -le hi.txt
-rw-r--r--+ 1 paul wheel 20 Sep 13 23:16 hi.txt
0: user:paul allow append

• Now we can see the file
$ cat hi.txt
hello
appended data

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 50

The “deny read, write” entry is gone

chmod -a# N removes rule N

Changing Permissions

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 51

Initial file permissions
On Unix-derived systems (Linux, macOS, Android, *BSD):
• umask = set of permissions applications cannot set on files
– Bitmask (octal) of bits that will be turned off

• To disallow read-write-execute for everyone but the owner
– umask = 000 111 111 = 077

• Default umask on macOS & Ubuntu is 022
– 022 = 000 010 010 = --- -w- -w-
– This takes away write access from group & other
– By default, new files are readable by all and writable only by the owner

See the umask command and umask system call man pages
52September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Watch out for race conditions!
Suppose we create a file readable by all: rwxr--r--

rwx, r, r

• And then we change the permissions to rwx------
rwx, -, -

• We don’t know when the attacker will hit

• Once the attacker has the file open, changing permissions does not take access away
– Access rights are only checked when the file is opened!

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 53

Create a file: rwx-r--r-
Change permissions to rwx------
[Attacker opens the file for reading]
Do your work

Create a file: rwx-r--r-
[Attacker opens the file for reading]
Change permissions to rwx------
Do your work

GOOD BAD

#!/bin/bash

myapp >secretfile

chmod go-r secretfile

Giving files away
• You can change the owner of a file

chown alice testfile

– Changes the file’s owner to alice

• You can change the group of a file too
chgrp accounting testfile

– Changes the file’s group to accounting

… but you have to be the owner to do either

54September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Changing user & group IDs
• root = uid 0 = super user
– Access to everything

• How do you log in?
– login program runs as uid=0
– Gets your credentials
– Authenticates you
– Then:

55

chdir(home_directory);
setgid(group_id);
setuid(user_id);
execve(user_shell, …);

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Changing user ID temporarily
• What if some files need special access?
– A print program needs to access the printer queue
– A database needs to access its underlying files

• An executable file normally runs under the user’s ID

• A special permission bit, the “setuid bit” changes this
– Executable files with the setuid bit

will run with the effective UID set to the owner of the file
– Directories with the setuid bit set

will force all files and sub-directories created in them to be owned by the directory owner

• Same thing with groups – the setgid permission bit
– Executable files with this bit set will run with effective gid set to the gid of the file.

56September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Principle of Least Privilege
At each abstraction layer, every element (user, process, function) should be able to
access only the resources necessary to perform its task
Even if an element is compromised, the scope of damage is limited

Consider:
– Good: You cannot kill another user’s process
– Good: You cannot open the /etc/hosts file for writing
– Good: Private member functions & local variables in functions limit scope

– Violation: a compromised print daemon allows someone to add users
– Violation: a process can write a file even though there is no need to
– Violation: admin privileges set by default for any user account

Least privilege is often difficult to define & enforce
September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 57

Privilege Separation
Divide a program into multiple parts: high & low privilege components

Example on POSIX systems
– Each process has a real and effective user ID
– Privileges are evaluated based on the effective user ID
• Normally, uid == euid

– An executable file may be tagged with a setuid bit
• chmod +sx filename

• When run: uid = user’s ID
euid = file owner’s ID (without setuid, runs with user’s ID)

– Separating a program
1. Run a setuid program
2. Create a communication link to self (pipe, socket, shared memory)
3. fork
4. One of the processes will call seteuid(getuid()) to lower its privilege

58

Low
privilege part

High
privilege part

User interaction

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Setuid can get you into trouble!
• Most setuid programs ran as root

• If they were compromised, the whole system was compromised

• This was one of the best attack vectors for Unix/Linux systems

59September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 60

Other Access Control Models
Part 3

What’s wrong with ACLs?

• Users are in control

chmod o+rw secret.docx

– Now everyone can read and modify secret.docx

• Doesn’t work well in environments where management needs to define
access permissions

• No ability to give time-based or location-based permissions

• Access is associated with objects
– Hard to turn off access for a subject - except by locking the user
– Otherwise have to go through each object and remove user from the ACL

… but you’re still stuck with default access permissions and wondering how other users will set access
rights in the future

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 61

Access Control Models: MAC vs. DAC
DAC: Discretionary Access Control
– A subject (domain) can pass information onto any other subject
– In some cases, access rights may be transferred

e.g., chown
– Users are in charge of access permissions
– Most systems use this

MAC: Mandatory Access Control
– Policy is centrally controlled
– Users cannot override the policy
– Administrators are in charge of access permissions

62September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

MLS: Multilevel Security Systems

Handle multiple levels of classified data in one system

Bell-LaPadula Model
– Designed for the military
– Based on U.S. military classification levels

63

Top Secret

Secret

Confidential

Unclassified

If you have confidential clearance:

– You can access confidential &
unclassified data

– You can create confidential, secret,
and top-secret data

Motivation:
Preserve confidentiality. If one
program gets hacked, it will not
be able to access data at higher
levels of classification

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Designed to address security concerns in the Air Force

Bell-LaPadula (BLP) Access Model
• Objects are classified into a hierarchy of sensitivity levels
– Unclassified, Confidential, Secret, Top Secret

• Each user is assigned a clearance

• “No read up; no write down”
– Cannot read from a higher clearance level
– Cannot write to a lower clearance level

• Assumes vulnerabilities exist
and staff may be careless

• Need a “trusted subject” to declassify files

64

Top Secret

Secret

Confidential

Unclassified

N
o

re
ad

 u
p

N
o

w
rit

e
do

w
n

Confidential cannot read Secret
Confidential cannot write Unclassified

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Bell-LaPadula (BLP) Model Properties
Every subject & object gets a security label (e.g., confidential, secret)
1. The Simple Security Property – mandatory rules for reading

– No Read Up (NRU)
A subject cannot read from a higher security level

2. *-Property (star-property) – mandatory rules for writing
– No Write Down (NWD)

A subject cannot write to a lower security level

3. The Discretionary Security Property
– Access control matrix can be used for DAC after MAC is enforced

65September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Type Enforcement Model (TE)
Secondary Access Control Matrix that gives MAC priority over DAC

• Domains and Types
– Assigns subjects to domains
– Assigns objects to types
– Matrix defines permitted domain-domain and domain-type interactions

66September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Role-Based Access Control (RBAC)
• More general than Bell-LaPadula

• Designed to allow enforcement of both MAC & DAC properties

• Access decisions do not depend on user IDs but on roles
– Administrators define roles for various job functions
– Each role contains permissions to perform certain operations
– Users are assigned one or more roles

• Roles are job functions, not permissions
– “update customer information” is a role
– “write to the database” is not a role

• Enables fine-grained access
– Roles may be defined in application specific ways (e.g., “move funds”)

67September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

RBAC Rules
• Role assignment
– A subject can execute an operation only if the subject has been assigned a role

• Role authorization
– A subject’s active role must be authorized for that subject
– Ensures that users can only take on roles for which they have been authorized

• Transaction authorization
– A subject can execute a transaction only if the transaction is authorized through the

subject’s role membership

68

RBAC is essential to database security

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Aren’t roles == groups?
• Group = collection of users
– Does not enable management of user-permission relationships

• Role = collection of permissions
– Permissions can be associated with users and groups

• Roles have a session
– Users can activate a role

69September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

RBAC Benefits
• RBAC is hugely popular in large companies
– Driven by regulations such as HIPAA and Sarbanes-Oxley

• Makes it easy to manage movement of employees

• Makes it easy to manage “separation of duty” requirements

• Can manage complex relationships
– Doctor X wants to view records of Patient Y
– Doctor needs roles of “Doctor” and “attending doctor with respect to Y”
– Roles allow specification of only if, not if or if and only if relations

• RBAC can simulate MAC and DAC

70

See http://csrc.nist.gov/groups/SNS/rbac/faq.html

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

SELinux (Security Enhanced Linux)
SELinux = Security-Enhanced Linux

Originally a kernel patch created by the NSA to add MAC to Linux

Supports three MAC models:
1. Type Enforcement (TE)
2. Role-Based Access Controls (RBAC)
3. Multilevel Security (MLS) – the Bell-LaPadula Model
– Multi-Category Security (MCS)
• Extension of MLS to define categories within a security level

There other security models and implementations available in other
distributions

71February 6, 2019 CS 419 © 2019 Paul Krzyzanowski

Type Enforcement (TE) on SELinux
• Subjects are grouped into domains
– Processes are subjects – they run with the privileges of a user
– Each subject is assigned a label identifies its domain

• Objects are grouped into types
– A label assigned to an object (file) identifies its type

• Domains & types are managed in the same way
– Each has a security context, represented by a security ID (SID)

• An Access Control Matrix defines subject-object permissions

• Each process has a security ID (SID), user ID, and group ID

72February 6, 2019 CS 419 © 2019 Paul Krzyzanowski

Type Enforcement (TE) on SELinux
Access control rules
The security administrator defines
what access a domain (subject) can perform on a type (object)

allow userdomain bin_t:file: execute;
allow user2domain bin_t:file: read;

• Allows users with the label "userdomain" execute rights for files with the label "bin_t"

• Allows users with the label "user2domain" read rights for those files

73February 6, 2019 CS 419 © 2019 Paul Krzyzanowski

RBAC in SELinux
• RBAC is built on top of TE (type enforcement)
– Users mapped to roles at login time
– Roles are authorized for domains
– Domains are given permissions to access object types

• Role-based access is specified in terms of TE
– Role = { groups, users, file operatons }
– Goal is to simplify labeling

Note:
This does not allow fine-grained roles, such as “access employee names” or
“transfer funds”

February 6, 2019 CS 419 © 2019 Paul Krzyzanowski 74

Biba Integrity Model
• Bell-LaPadula was designed to address confidentiality

• Biba is designed to ensure data integrity
Confidentiality = constraints on who can read data

Integrity = constraints on who can write data

Biba model properties
– Simple Security Property = A subject cannot read an object from a lower integrity level

Subjects may not be corrupted by objects from a lower level
No read down

– Star property = A subject cannot write to an object at a higher integrity level
Subjects may not corrupt objects at a higher level than the subject
No write up

– A process cannot request higher access

75

Motivation:
Preserve data integrity.
If one program gets hacked, it
will not be able to modify data
at higher levels of integrity

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

An example of where Biba is useful
The Biba model fits certain real-world applications

• ECG device
– Runs a calibration process, which stores a calibration file = high integrity
– Runs user processes, that run ECG tests = lower integrity

• Normal users cannot write the calibration file but can read it
– Can read data at higher levels (calibration = higher data level)
• User process can read calibration data – but cannot modify it

• Calibration process can write data to lower levels
• Calibration process can write to the user process – but cannot read user data

• Works well when you need to get data from a trusted device

76September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Biba Problems
• Like Bell-LaPadula, it doesn’t always fit the real world
• Microsoft offers Mandatory Integrity Control (Biba model)
– User’s access token gets assigned an integrity level
– File objects have an Access Control Entry (ACE) to hold an integrity level:

– System: Critical files
– Medium: Regular users and objects
– High: Elevated users
– Low: Internet Explorer, Adobe Reader, etc.

• New process gets the minimum of the user integrity level and the file integrity level
– Default policy = NoWriteUp
• Goal: Apps downloaded with IE can read files but cannot write them – limit damage done by malware
• Trusted subjects would have to overwrite the security model
– Users get used to the pop-up dialog boxes asking for permission!

– Microsoft dropped the NoReadDown restriction
• Did not end up protecting the system from users

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 77

MAC vs DAC Summary
• DAC = Discretionary Access Control
– The user is in charge of setting file permissions
– If you own a file, you can set any access permissions you want on it … and even

give it away
– The root user (user ID 0) has the power to change any permissions

• MAC = Mandatory Access Control
– System owner (administrator) defines security policies
– Users cannot override them, regardless of their privilege level

• MAC takes priority over DAC

78February 6, 2019 CS 419 © 2019 Paul Krzyzanowski

Access Models: Summary
• Discretionary Access Control
– Works great when it’s ok to put the user is in charge

• Mandatory Access Control
– Needed when an organization needs to define policies
– Bell-LaPadula (BLP)
• Oldest & most widely studied model – synonymous with MLS
• Designed to protect confidentiality
• Doesn’t work well outside of the DoD … and is clunky within the DoD

– Type Enforcement (TE)
• Simple MAC model to override DAC

– Role-Based Access Control (RBAC)
• Identifies roles and assigns users to roles
• Made popular by business needs
• Most actively used MAC model

– Biba Model
• Opposite of Bell-LaPadula: concerned with integrity, not confidentiality

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 79

Multilateral Security

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 80

Multilevel Security
• Subjects and objects have assigned

classification labels

• Rules control what you can read or write

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 81

Top Secret

Secret

Confidential

Unclassified

N
o

re
ad

 u
p

N
o

w
rit

e
do

w
n

Bell-LaPadula

Multilateral Security
Each security level may be divided into compartments
– Usually applied to the top-secret level
– TS/SCI = Top-Secret / Special Compartmentalized Intelligence
– You will be granted access to specific compartments
• Formalized description of “need to know”

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 82

Top Secret

Secret

Confidential

Unclassified

TS/WILEY TS/PEPE TS/TWEETY

Compartmentalization
• Subjects & objects get security labels (compartments) in addition to security

classification labels

• If you do not have clearance for the label, you cannot access the data
– {TOP SECRET, UFO} cannot be read by someone with {TOP SECRET} clearance
– Neither can {SECRET, UFO}

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 83

Lattice Model
Graph representing access rights of different labels & levels

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 84

{TOP SECRET, UFO}

{TOP SECRET, ELVIS}

{TOP SECRET}

{SECRET, UFO} {SECRET, ELVIS}
{SECRET}

{TOP SECRET, UFO, ELVIS}

{CLASSIFIED}

{UNCLASSIFIED}

{SECRET, YETI}

Multilateral Security
• Data from two compartments ⇒ third compartment
– Creates more isolation
– Does not help with sharing

• One option
– Allow multiple compartments at a lower level to be readable by a higher level

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 85

{TOP SECRET}

{SECRET, UFO} {SECRET, ELVIS}
{SECRET}

Multilevel & Multilateral Security Models
• Do not help downgrading data
– Need special roles to re-label or declassify data

• Handing searches across compartments is difficult
– No single entity will likely have rights to everything

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 86

Chinese Wall model
Chinese wall = rules designed to prevent conflicts of interest
– Common in financial industry
• E.g., separate corporate advisory & brokerage groups

– Also in law firms and advertising agencies

• Separation of duty
– A user can perform transaction A or B but not both

• Three layers of abstraction
– Objects: files that contain resources about some company
– Company groups = set of files relating to one company
– Conflict classes: groups of competing company groups:

Class 1 = {Coca-Cola, PepsiCo, Keurig Dr. Pepper}
Class 2 = {Alaska Airlines, American Airlines, United, Delta, JetBlue }

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 87

Chinese Wall model
Basic rule

A subject can access objects from a company only if it never accessed objects from competing
companies.

Simple Security property
– A subject s can be granted access to an object o only if the object
• Is in the same company group as objects already accessed by s

or
• o belongs to a different conflict class

*-property
– Write access is allowed only if
• Access is permitted by the simple security property

and
• No object was read which is in a different company dataset than the one for which write access is requested and

contains unsanitized information
– Sanitization = disguising a company’s identify
– This means that you could read data across the wall only if it’s anonymized

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 88

MAC can reduce the need for root
• Traditionally the root user has supreme power
– You need supreme power to do any administrative task
– Example: a network administrator can read – and modify – any files on the

system

• Models such as TE and RBAC allow you to define classes of users
that can perform only certain operations and access certain files
– E.g., you can define a network administrator who can modify network

configuration files and run network commands ... but not create user accounts
or reboot the system

89February 6, 2019 CS 419 © 2019 Paul Krzyzanowski

Security Risks
• Even if the mechanisms work perfectly, policies may fail
– DAC: you’re trusting the users or a sysadmin to set everything up correctly
– MAC
• User or role assignment may be incorrect
• Collaboration needs to be considered
• Models like Bell-LaPadula and Biba require overrides to function well

• Corruption
– Attacks may change the definition of roles or the mapping of users to roles
– This is an attack on the Trusted Computing Base

• Users
– Most malware is installed willingly
– Users thus give it privileges of – at least – normal applications
– As far as the operating system is concerned, it is enforcing defined policy

90September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Security Risks
• Even administrators should not be able to read all files
– Many security systems enforce this
– Edward Snowden should not have been able to copy sensitive documents onto a thumb

drive … even if NSA policy banned thumb drives

• General assumption has been that programs are trusted and run with the
user’s privileges

• Worked well for system programs

• Do you trust the game you installed on your phone?

• Need to consider better application isolation
– Android turned Linux into a single-user system
– User IDs are used on a per-application bases

91September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski

Program-Based Control
• A lot of access decisions must be handled by programs, not the OS
– Database users and the access each user has within the database
– Microsoft Exchange & Active Directory administrators
– Mail readers
– Web services: users are unlikely to have accounts on the system
– Movement of data over a network
• How do you send access permissions to another system?
• Digital rights management = requires trusted players

• Programs may implement RBAC (e.g., Exchange) or other mechanisms
– But the OS does not help

September 18, 2020 CS 419 © 2018-2020 Paul Krzyzanowski 92

The End

September 18, 2020 93CS 419 © 2018-2020 Paul Krzyzanowski

