CS 419 Computer Security Week 0: About the Class

Paul Krzyzanowski

© 2022 Paul Krzyzanowski. No part of this content, may be reproduced or reposted in whole or in part in any manner without the permission of the copyright owner.

Welcome to computer security

About Me

Canvas: https://rutgers.instructure.com/courses/160949

web: www.cs.rutgers.edu/~pxk/419

mirror: www.pk.org/419

email: pxk@cs.rutgers.edu phone: +190.87.99.88.89

Class info

- Contact info
- TA info
- Syllabus
- Lecture notes
- Canvas links to:
 - Class news
 - Homework

100 U-	< >	Оп	
Menu		=	Compute
Homepage			CS 4
Main Course Page			Spring 2
Syllabus			
Announcements			Welcome to be updatin
Homework			Class Ti
Documents			-
Grading Info			
Canvas			
Course info	v		
			Contact
			- 2
Get in touch			

i people.cs.rutgers.edu/~pxk/419/

er Security: Paul Krzyzanowski

419: Computer Security

2022

to CS 419 - Computer Security. This page contains information for this course. I'll ng it and other pages under it regularly as the semester goes by.

imes

activity	sec	period	time	place
lecture	1,2,3	6 - 7	Mon 5:40 - 8:40 pm	TIL-254
recitation	1	6*	Thu 5:40 - 6:35 pm	BE-252
recitation	2	5*	Thu 3:50 - 4:45 pm	BE-253
recitation	3	4*	Thu 2:00 - 2:55 pm	BE-253

Information Paul Krzyzanowski name address Department of Computer Science Hill Center, Busch Campus **Rutgers University** 110 Frelinghuysen Road Piscataway, NJ 08854-8019 email pxk@cs.rutgers.edu http://www.cs.rutgers.edu/~pxk/rutgers url mirror http://pk.org/rutgers +190.87.99.88.89 voice office 403 Hill Monday, 8:00-9:00 (only by appointment; please send email) my hours Daniel Bittner, Xiaoxiao He TA info

For questions or comments

about this site, contact Paul

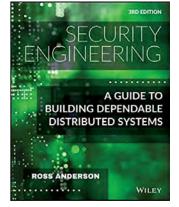
webinfo@pk.org

Krzyzanowski:

Class meetings

- Classes will be held via Zoom (initially)
- Lecture recordings will be made available
 - Canvas
- You can take classes asynchronously when they're remote
 - I'll be around for questions
 - Send via zoom chat, email, etc.
 - I will post FAQs and corrections if needed

None required - but we will use several sources


Security Engineering: A Guide to Building Dependable Distributed Systems 3rd Edition

by Ross J. Anderson

https://www.cl.cam.ac.uk/~rja14/book.html

But mostly...

- Other reading material on the web
- Lecture slides
- Lecture notes/summaries

Policy

If classes are remote:

- Weekly quizzes: 5-6 questions; 15 minutes

else

- 3-4 in-class quizzes, no final

Short programming assignments (~4)

- Individual assignments
- Due prior to the due date

Written assignments

- Due prior to the due date

Collaboration & academic integrity

Individual assignments – no copying!

Grades

- Quizzes ~ 40%
- 6-10 written assignments ~ 25%
- ~4-5 programming assignments ~35%

What this course IS

- Security engineering
- Understand why systems have weaknesses
- How do we deal with these weaknesses?
 - People, devices, networks, operating systems, applications
 - Cryptographic algorithms
 - Authentication & key distribution protocols
 - Ensuring integrity & confidentiality

Things we'll cover

- Intro: threats, risks, security needs
- Access control
 - Core OS mechanisms for access control
 - Mandatory vs. discretionary access control
- Code injection
 - Buffer overflow, shell scripts, input validation
- Client-side risks & protection
 - Viruses, worms, trojans
 - Human factors

• App confinement

- Jails, virtual machines, sandboxes

- Cryptography
 - Encryption
- Integrity & key distribution
 - Public keys, hashing, digital signatures
- Authentication
 - Passwords, tokens, biometrics
- Cryptocurrency
 Bitcoin, proof of work, proof of stake
- Network security
 - Switches, routers, services
- Network protection
 - Firewalls, VPNs, Zero Trust

- Web security
- Mobile security
- Anonymous communication
 Tor
- Content protection
 - Steganography, watermarking, DRM
- IoT
 - Security risks in embedded software
- Forensics

What this course is NOT

- How to write viruses/trojans/malware
- How to break into systems
- How to be a hacker
- Rigorous mathematics on systems, security, or cryptography

The End