Week 11: Large-Scale Data Processing
Part 3: Spark
Spark: Generalizing MapReduce
MapReduce problems

• Not efficient when multiple passes needed
• Problems need to be converted to a series of Map & Reduce operations

• The next phase can never start until the previous has completed
• Output needs to be stored in the file system before the next step starts
 – Storage involves disk writes & replication
• Possibly unnecessary stages, such as when map simply passes <key, value> results from the previous reduce
Apache Spark Goals

• Generalize MapReduce
 – Similar shard-and-gather approach to MapReduce
 – Create multi-step pipelines based on directed acyclic graphs (DAGs) of data flows

• Create a general functional programming model
 – Transformation and action
 – In MapReduce, transformation = map, action = reduce
 – In Spark, support operations beyond map and reduce

• Add fast data sharing
 – In-memory caching
 – Different computation phases can use the same data if needed

• And generic data storage interfaces
 – Storage agnostic: use HDFS, Cassandra database, whatever
 – Resilient Distributed Data (RDD) sets
 • An RDD is a chunk of data that gets processed – a large collection of stuff
Spark Design: RDDs

RDD: Resilient Distributed Datasets

– Table that can be sharded (split) across many servers
– Holds any type of data
– Immutable: you can process the RDD to create a new RDD but not modify the original

Two operations on RDDs

1. Transformations: transformation function takes RDD as input & creates a new RDD: $RDD \rightarrow RDD'$
 - Examples: map, filter, flatMap, groupByKey, reduceByKey, aggregateByKey, ...

2. Actions: evaluates an RDD and creates a value: $RDD \rightarrow \text{result}$
 - Examples: reduce, collect, count, first, take, countByKey, ...

Shared variables

– Broadcast Variables: define read-only data that will be cached on each system
– Accumulators: used for counters (e.g., in MapReduce) or sums
 - Only the driver program can read the value of the accumulator
• Job = bunch of transformations & actions on RDDs
High-level view

• **Cluster manager** breaks the job into **tasks**

• Sends **tasks** to **worker** nodes where the data lives
One or more **executors**. Each executor:

- Runs as a JVM (Java Virtual Machine) process
- Talks with the Spark cluster manager
- Receives tasks
 - JVM code
 (e.g., compiled Java, Clojure, Scala, JRuby, …)
 - Task = **transformation** or **action**
- Gets data to be processed: the RDD
- Has its own cache
 - Stores results in memory
 - Key to high performance
Worker node

Cluster Manager

Worker Node

Executor – JVM

Task
Task
Task

Cache

Task
Task
Task

Cache

Local HDFS data
Data & RDDs

• Data organized into RDDs
 – One RDD may be partitioned across lots of computers

• How are RDDs created?
 – Create it from any file stored in HDFS or other storage supported in Hadoop (Amazon S3, HDFS, HBase, Cassandra, etc.)
 • Created externally (e.g., text files, SQL or NoSQL database)
 • Examples:
 – Query a database & make the query results into an RDD
 – Any Hadoop InputFormat, such as a list of files or a directory
 – Streaming sources (via Spark Streaming)
 • Fault-tolerant stream with a sliding time window
 – Output of a Spark transformation function
 • Example, filter out data, select key-value pairs
<table>
<thead>
<tr>
<th>Properties of RDDs</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Immutable</td>
<td>• You cannot change it – only create new RDDs</td>
</tr>
<tr>
<td></td>
<td>• The framework will eventually collect unused RDDs</td>
</tr>
<tr>
<td>Partitioned</td>
<td>Parts of an RDD may go to different servers</td>
</tr>
<tr>
<td></td>
<td>• Splits can be range-based or hash-based</td>
</tr>
<tr>
<td></td>
<td>• For hash-based, default partitioning function = $\text{hash}(\text{key}) \mod \text{server_count}$</td>
</tr>
<tr>
<td>Dependent</td>
<td>Created from – and thus dependent on – other RDDs</td>
</tr>
<tr>
<td></td>
<td>• Either original source data or computed from one or more other RDDs</td>
</tr>
<tr>
<td>Fault tolerant</td>
<td>Original RDD in stable storage; other RDDs can be regenerated if needed</td>
</tr>
<tr>
<td>Persistent</td>
<td>Optional for intermediate RDDs</td>
</tr>
<tr>
<td></td>
<td>• Original data is persistent. Intermediate data can be marked to be persistent</td>
</tr>
<tr>
<td>Typed</td>
<td>Contains some parsable data structure – e.g., a key-value set</td>
</tr>
<tr>
<td>Ordered (optional)</td>
<td>Elements in an RDD can be sorted</td>
</tr>
</tbody>
</table>
Operations on RDDs

Two types of operations on RDDs:

• **Transformations**: create new RDDs
 – **Lazy**: computed when needed, not immediately
 – Transformed RDD is computed when an action is run on it
 • **Work backwards**:
 – What RDDs do you need to apply to get an action?
 – What RDDs do you need to apply to get the input to this RDD?
 – RDD can be persisted into memory or disk storage

• **Actions**: create result values
 – **Finalizing** operations
 • *Reduce, count, grab samples, write to file*
Spark Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>map(func)</code></td>
<td>Pass each element through a function <code>func</code></td>
</tr>
<tr>
<td><code>filter(func)</code></td>
<td>Select elements of the source on which <code>func</code> returns true</td>
</tr>
<tr>
<td><code>flatMap(func)</code></td>
<td>Each input item can be mapped to 0 or more output items</td>
</tr>
<tr>
<td><code>sample(withReplacement, fraction, seed)</code></td>
<td>Sample a <code>fraction</code> fraction of the data, with or without replacement, using a given random number generator seed</td>
</tr>
<tr>
<td><code>union(otherdataset)</code></td>
<td>Union of the elements in the source data set and <code>otherdataset</code></td>
</tr>
<tr>
<td><code>intersection(otherdataset)</code></td>
<td>The elements that are in common to two datasets</td>
</tr>
</tbody>
</table>
Spark Transformations

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>groupByKey</code>([numtasks])</td>
<td>When called on a dataset of (K, V) pairs, returns a dataset of (K, seq[V]) pairs</td>
</tr>
<tr>
<td><code>reduceByKey</code>(func, [numtasks])</td>
<td>Aggregate the values for each key using the given reduce function</td>
</tr>
<tr>
<td><code>sortByKey</code>([ascending], [numtasks])</td>
<td>Sort keys in ascending or descending order</td>
</tr>
<tr>
<td><code>join</code>(otherDataset, [numtasks])</td>
<td>Combines two datasets, (K, V) and (K, W) into (K, (V, W))</td>
</tr>
<tr>
<td><code>cogroup</code>(otherDataset, [numtasks])</td>
<td>Given (K, V) and (K, W), returns (K, Seq[V], Seq[W])</td>
</tr>
<tr>
<td><code>cartesian</code>(otherDataset)</td>
<td>For two datasets of types T and U, returns a dataset of (T, U) pairs</td>
</tr>
</tbody>
</table>
Spark Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>reduce(func)</code></td>
<td>Aggregate elements of the dataset using <code>func</code>.</td>
</tr>
<tr>
<td><code>collect(func, [numtasks])</code></td>
<td>Return all elements of the dataset as an array</td>
</tr>
<tr>
<td><code>count()</code></td>
<td>Return the number of elements in the dataset</td>
</tr>
<tr>
<td><code>first()</code></td>
<td>Return the first element of the dataset</td>
</tr>
<tr>
<td><code>take(n)</code></td>
<td>Return an array with the first n elements of the dataset</td>
</tr>
<tr>
<td><code>takeSample(withReplacement, fraction, seed)</code></td>
<td>Return an array with a random sample of num elements of the dataset</td>
</tr>
</tbody>
</table>
Spark Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>saveAsTextFile(path)</code></td>
<td>Write dataset elements as a text file</td>
</tr>
<tr>
<td><code>saveAsSequenceFile(path)</code></td>
<td>Write dataset elements as a Hadoop SequenceFile</td>
</tr>
<tr>
<td><code>countByKey ()</code></td>
<td>For (K, V) RDDs, return a map of (K, Int) pairs with the count of each key</td>
</tr>
<tr>
<td><code>foreach(func)</code></td>
<td>Run func on each element of the dataset</td>
</tr>
</tbody>
</table>
• Spark does not care how source data is stored
 – RDD connector determines that
 – E.g.,
 read RDDs from tables in a Cassandra DB;
 write new RDDs to HBase tables

• **RDD Fault tolerance**
 – RDDs track the sequence of transformations used to create them
 – Enables recomputing of lost data
 • Go back to the previous RDD and apply the transforms again
 • Dependencies tracked by Spark in a **directed acyclic graph** (DAG)
Example: processing logs

- **Transform** (creates new RDDs)
 - Extract error message from a log
 - Parse out the source of error

- **Actions**: count mysql & php errors

```scala
// base RDD
val lines = sc.textFile("hdfs://...")

// transformed RDDs
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split("\t")).map(r => r(1))
messages.cache()

// action 1
messages.filter(_.contains("mysql")).count()

// action 2
messages.filter(_.contains("php")).count()
```

- **Initial RDD** – our data source
- **Extract only lines starting with ERROR**
- **Split string by tabs**.
 - Then extract string after the ERROR
- **Cache the results**: default is memory and disk as an overflow
- **Filter** transformation to extract lines Containing "mysql" – then count them
- **Filter** transformation to extract lines Containing "php" – then count them
Spark Ecosystem

- **Spark Streaming**: process real-time streaming data
 - Micro-batch style of processing
 - Uses DStream: series of RDDs

- **Spark SQL**: access Spark data over JDBC API
 - Use SQL-like queries on Spark data

- **Spark Mlib**: machine learning library
 - Utilities for classification, regression, clustering, filtering, ...

- **Spark GraphX**: graph computation
 - Adds Pregel API to Spark
 - Extends RDD by introducing a directed multi-graph with properties attached to each vertex & edge
 - Set of operators to create subgraphs, join vertices, aggregate messages, ...
Spark Streaming

- MapReduce & Pregel expect static data
- **Spark Streaming** enables processing live data streams
 - Same programming operations
 - Input data is chunked into batches
 - Programmer specifies time interval
Spark Streaming: DStreams

Discretized Stream = DStream

- Continuous stream of data (from source or a transformation)
- Appears as a continuous series of RDDs, each for a time interval

- Each operation on a DStream translates to operations on the RDDs

- Join operations allow combining multiple streams
Spark Summary

• Fast
 – Often up to 10x faster on disk and 100x faster in memory than MapReduce
 – General execution graph model
 • No need to have ”useless” phases just to fit into the model
 – In-memory storage for RDDs

• Fault tolerant: RDDs can be regenerated
 – You know what the input data set was, what transformations were applied to it, and what output it creates

• Supports streaming
 – Handle continuous data streams via Spark Streaming
The End