Week 11: Large-Scale Data Processing
Part 3: Spark
Spark: Generalizing MapReduce
MapReduce problems

- Not efficient when multiple passes needed
- Problems need to be converted to a series of Map & Reduce operations
- The next phase can never start until the previous has completed
- Output needs to be stored in the file system before the next step starts
 - Storage involves disk writes & replication
- Possibly unnecessary stages, such as map that simply passes <key, value> results from the previous reduce
Apache Spark Goals

- **Generalize MapReduce**
 - Similar shard-and-gather approach to MapReduce
 - Create multi-step pipelines based on directed acyclic graphs (DAGs) of data flows

- **Create a general functional programming model**
 - *Transformation* and *action*
 - In MapReduce, *transformation* = map, *action* = reduce
 - In Spark, support operations beyond *map* and *reduce*

- **Add fast data sharing**
 - In-memory caching
 - Different computation phases can use the same data if needed

- **And generic data storage interfaces**
 - Storage agnostic: use HDFS, Cassandra database, whatever
 - Resilient Distributed Data (RDD) sets
 - An RDD is a chunk of data that gets processed – a large collection of stuff
Spark Design: RDDs

RDD: Resilient Distributed Datasets
- Table that can be sharded across many servers
- Holds any type of data
- Immutable: you can process the RDD to create a new RDD but not modify the original

Two operations on RDDs
1. **Transformations**: transformation function takes RDD as input & creates a new RDD: \(\text{RDD} \rightarrow \text{RDD}' \)
 - Examples: `map`, `filter`, `flatMap`, `groupByKey`, `reduceByKey`, `aggregateByKey`, ...
2. **Actions**: evaluates an RDD and creates a value: \(\text{RDD} \rightarrow \text{result} \)
 - Examples: `reduce`, `collect`, `count`, `first`, `take`, `countByKey`, ...

Shared variables
- **Broadcast Variables**: define read-only data that will be cached on each system
- **Accumulators**: used for counters (e.g., in MapReduce) or sums
 - Only the driver program can read the value of the accumulator
High-level view

• **Job** = bunch of transformations & actions on RDDs
High-level view

- Cluster manager breaks the job into tasks
- Sends tasks to worker nodes where the data lives
Worker node

One or more **executors**

- JVM process
- Talks with cluster manager
- Receives **tasks**
 - JVM code
 (e.g., compiled Java, Clojure, Scala, JRuby, …)
 - Task = **transformation** or **action**
- Data to be processed: RDD
- Cache
 - Stores results in memory
 - Key to high performance
One or more **executors**

- JVM process
- Talks with cluster manager
- Receives tasks
 - JVM code
 (e.g., compiled Java, Clojure, Scala, JRuby, …)
 - Task = **transformation** or **action**
- Data to be processed: RDD
- Cache
 - Stores results in memory
 - Key to high performance
Data & RDDs

• Data organized into RDDs
 – One RDD may be partitioned across lots of computers

• How are RDDs created?
 – Create from any file stored in HDFS or other storage supported in Hadoop (Amazon S3, HDFS, HBase, Cassandra, etc.)
 • Created externally (e.g., event stream, text files, database)
 • Example:
 – Query a database & make the query results an RDD
 – Any Hadoop InputFormat, such as a list of files or a directory
 – Streaming sources (via Spark Streaming)
 • Fault-tolerant stream with a sliding window
 – Output of a Spark transformation function
 • Example, filter out data, select key-value pairs
Properties of RDDs

- **Immutable**
 - You cannot change it – only create new RDDs
 - The framework will eventually collect unused RDDs

- **Partitioned** – parts of an RDD may go to different servers
 - Splits can be range-based or hash-based
 - For hash-based, default partitioning function = \(\text{hash(key)} \mod \text{server_count} \)

- Created from – and thus **dependent** on – other RDDs
 - Either original source data or computed from one or more other RDDs

- **Fault tolerant**
 - Original RDD in stable storage; other RDDs can be regenerated if needed

- **Persistent** – optional for intermediate RDDs
 - Original data is persistent. Intermediate data can be marked to be persistent

- **Typed**
 - Contains some parsable data structure – e.g., key-value set

- **Ordered** (optional)
 - Elements in an RDD can be sorted
Operations on RDDs

Two types of operations on RDDs

• **Transformations**: create new RDDs
 – **Lazy**: computed when needed, not immediately
 – Transformed RDD is computed when an action is run on it
 • **Work backwards**:
 – What RDDs do you need to apply to get an action?
 – What RDDs do you need to apply to get the input to this RDD?
 – RDD can be persisted into memory or disk storage

• **Actions**: create result values
 – **Finalizing** operations
 • *Reduce, count, grab samples, write to file*
<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>map(func)</td>
<td>Pass each element through a function $func$</td>
</tr>
<tr>
<td>filter(func)</td>
<td>Select elements of the source on which $func$ returns true</td>
</tr>
<tr>
<td>flatmap(func)</td>
<td>Each input item can be mapped to 0 or more output items</td>
</tr>
<tr>
<td>sample(withReplacement, fraction, seed)</td>
<td>Sample a $fraction$ fraction of the data, with or without replacement, using a given random number generator seed</td>
</tr>
<tr>
<td>union(otherdataset)</td>
<td>Union of the elements in the source data set and $otherdataset$</td>
</tr>
<tr>
<td>intersection(otherdataset)</td>
<td>The elements that are in common to two datasets</td>
</tr>
<tr>
<td>Transformation</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
</tr>
<tr>
<td>groupByKey([numtasks])</td>
<td>When called on a dataset of (K, V) pairs, returns a dataset of (K, seq[V]) pairs</td>
</tr>
<tr>
<td>reduceByKey(func, [numtasks])</td>
<td>Aggregate the values for each key using the given <code>reduce</code> function</td>
</tr>
<tr>
<td>sortByKey([ascending], [numtasks])</td>
<td>Sort keys in ascending or descending order</td>
</tr>
<tr>
<td>join(otherDataset, [numtasks])</td>
<td>Combines two datasets, (K, V) and (K, W) into (K, (V, W))</td>
</tr>
<tr>
<td>cogroup(otherDataset, [numtasks])</td>
<td>Given (K, V) and (K, W), returns (K, Seq[V], Seq[W])</td>
</tr>
<tr>
<td>cartesian(otherDataset)</td>
<td>For two datasets of types T and U, returns a dataset of (T, U) pairs</td>
</tr>
<tr>
<td>Action</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
</tr>
<tr>
<td><code>reduce(func)</code></td>
<td>Aggregate elements of the dataset using <code>func</code>.</td>
</tr>
<tr>
<td><code>collect(func, [numtasks])</code></td>
<td>Return all elements of the dataset as an array</td>
</tr>
<tr>
<td><code>count()</code></td>
<td>Return the number of elements in the dataset</td>
</tr>
<tr>
<td><code>first()</code></td>
<td>Return the first element of the dataset</td>
</tr>
<tr>
<td><code>take(n)</code></td>
<td>Return an array with the first <code>n</code> elements of the dataset</td>
</tr>
<tr>
<td><code>takeSample(withReplacement, fraction, seed)</code></td>
<td>Return an array with a random sample of <code>num</code> elements of the dataset</td>
</tr>
</tbody>
</table>
Spark Actions

<table>
<thead>
<tr>
<th>Action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>saveAsTextFile(path)</code></td>
<td>Write dataset elements as a text file</td>
</tr>
<tr>
<td><code>saveAsSequenceFile(path)</code></td>
<td>Write dataset elements as a Hadoop SequenceFile</td>
</tr>
<tr>
<td><code>countByKey()</code></td>
<td>For (K, V) RDDs, return a map of (K, Int) pairs with the count of each key</td>
</tr>
<tr>
<td><code>foreach(func)</code></td>
<td>Run <code>func</code> on each element of the dataset</td>
</tr>
</tbody>
</table>
Data Storage

• Spark does not care how source data is stored
 – RDD connector determines that
 – E.g.,
 read RDDs from tables in a Cassandra DB;
 write new RDDs to HBase tables

• RDD Fault tolerance
 – RDDs track the sequence of transformations used to create them
 – Enables recomputing of lost data
 • Go back to the previous RDD and apply the transforms again
 • Dependencies tracked by Spark in a directed acyclic graph (DAG)
Example: processing logs

- **Transform** (creates new RDDs)
 - Extract error message from a log
 - Parse out the source of error

- **Actions**: count mysql & php errors

```scala
// base RDD
val lines = sc.textFile("hdfs://...")

// transformed RDDs
val errors = lines.filter(_.startsWith("ERROR"))
val messages = errors.map(_.split("\t")).map(r => r(1))
messages.cache()

// action 1
messages.filter(_.contains("mysql")).count()

// action 2
messages.filter(_.contains("php")).count()
```

- **Initial RDD** – our data source
- **Extract only lines starting with ERROR**
- **Split string by tabs.**
 - Then extract string after the ERROR
- **Cache the results:**
 - default is memory and disk as an overflow

Filter transformation to extract lines
- Containing "mysql" – then count them

Filter transformation to extract lines
- Containing "php" – then count them
Spark Ecosystem

• **Spark Streaming**: process real-time streaming data
 – Micro-batch style of processing
 – Uses DStream: series of RDDs

• **Spark SQL**: access Spark data over JDBC API
 – Use SQL-like queries on Spark data

• **Spark Mlib**: machine learning library
 – Utilities for classification, regression, clustering, filtering, ...

• **Spark GraphX**: graph computation
 – Adds Pregel API to Spark
 – Extends RDD by introducing a directed multi-graph with properties attached to each vertex & edge
 – Set of operators to create subgraphs, join vertices, aggregate messages, ...
Spark Streaming

- MapReduce & Pregel expect static data
- **Spark Streaming** enables processing live data streams
 - Same programming operations
 - Input data is chunked into batches
 - Programmer specifies time interval
Discretized Stream = DStream
- Continuous stream of data (from source or a transformation)
- Appears as a continuous series of RDDs, each for a time interval
- Each operation on a DStream translates to operations on the RDDs
- Join operations allow combining multiple streams
Spark Summary

• **Fast**
 – Often up to 10x faster on disk and 100x faster in memory than MapReduce
 – General execution graph model
 • No need to have ”useless” phases just to fit into the model
 – In-memory storage for RDDs

• **Fault tolerant: RDDs can be regenerated**
 – You know what the input data set was, what transformations were applied to it, and what output it creates

• **Supports streaming**
 – Handle continuous data streams via Spark Streaming
Apache Hive

• **MapReduce is powerful but requires**
 – Java programming
 – Parsing of input data
 – Programmers to figure out whether multiple iterations are needed

• **Apache Hive offers**
 – HiveQL: a query language similar to SQL
 – Table structure for data
 – Compiler that handles parsing, filtering, joining, etc., and scheduling multiple MapReduce jobs
 – Lots of user-defined functions (extensible)
Hive Components

• **Metastore**
 – Stores metadata for each of the tables
 – Tables are stored as HDFS files or externally

• **User interface**
 – Various clients: web client, command-line interface, JDBC/ODBC

• **Driver**
 – Receives HiveQL statements & creates sessions to execute them
 – Monitors progress & collects results from *reduce*

• **Compiler & Optimizer**
 – HiveQL → Directed Acyclic Graph (DAG)
 – Create optimized set of operations for MapReduce

• **Execution Engine**
 – Takes optimized DAG and runs the needed MapReduce jobs
Apache Hive Flow

1. Client program
2. Command-Line Interface
3. Client Driver
4. Web UI
5. Execution Engine
6. Metastore
7. DataNodes
8. Hadoop

Hadoop components:
- MapReduce Job Tracker
- NameNode
- DataNodes
Apache Hive Flow – annotated

1. The query is delivered to the driver.
2. Driver creates a session for the query.
3. The compiler parses the query. It contacts the metastore info about the data & generates an execution plan.
4. The execution plan is sent to the driver.
5. The driver sends the execution plan to the Execution Engine.
6. The Execution Engine sends the jobs to MapReduce.
7. The execution engine tells the driver the job is done and reads any results from the HDFS data nodes.
8. Results are sent back to the user interface.
Hive summary

• Designed as a data warehouse tool

• Not a relational database or on-line transaction processing (OLTP) system
 – No row-level data updates
 – No concept of transactions
 – No real-time queries (they are MapReduce jobs)
 • But usually fast enough for interactive use

• Benefits
 – Makes it easy to treat huge collections of data as a database
 – Easy to create & submit queries
 • No need to know Java or MapReduce
The End