#### CS 417 – DISTRIBUTED SYSTEMS

# Week 7: Distributed Lookup Part 3: Domain Name System (DNS)

Paul Krzyzanowski

© 2023 Paul Krzyzanowski. No part of this content may be reproduced or reposted in whole or in part in any manner without the permission of the copyright owner.

ecture

Notes

## How are IP addresses assigned?

IP addresses are distributed hierarchically

Internet Assigned Numbers Authority (IANA) at the top

- IANA is currently run by ICANN
  - Internet Corporation for Assigned Names and Numbers



IANA

#### How are machine names assigned?

- Early ARPANET
  - Globally unique names per machine (e.g., UCBVAX)
  - Kept track at the Network Information Center (NIC) at the Stanford Research Institute (SRI)
- That doesn't scale!
- A domain hierarchy was created in 1984 (RFC 920)
  - Domains are administrative entities: divide name management
  - Tree-structured global name space
  - Textual representation of domain names

```
www.cs.rutgers.edu
```



Jon Postel maintained, approved and tracked computer names & addresses on the Internet

### Domain Name Hierarchy



**CCTLD Country-code** domains ISO 3166 codes e.g., .us, .de, .ca, .es **IDN ccTLD** Internationalized country-code domains e.g., .中國, .pф **gTLD** Generic top-level domains e.g., .biz, .com, .edu, .gov, .info, .net, .org, .audio, .catering, .网络

There are currently 1,591 top-level domains (as of March 6, 2023)

Each top-level domain has an administrator assigned to it

Assignment is delegated to various organizations by the Internet Assigned Numbers Authority (IANA)

IANA keeps track of the root servers

See http://www.iana.org/domains/root/db for the latest count

#### Shared registration

- Domain name registry: this is the database
  - Keeps track of all domain names registered under a top-level domain
- Domain name registry operator: this is the company that runs the DB
  - NIC = Network Information Center the organization that keeps track of the registration of domain names under a top-level domain
    - Keeps the database of domain names
    - See <a href="https://www.icann.org/resources/pages/listing-2012-02-25-en">https://www.icann.org/resources/pages/listing-2012-02-25-en</a>
- Domain name registrar: this is the company you use to register
  - Company that lets you register a domain name
  - Registrars update the registry database at the NIC
  - See <u>https://www.iana.org/assignments/registrar-ids/registrar-ids.xhtml</u>

### Shared registration

- Multiple domain registrars provide domain registration services
  - 2,437 registars as of March 2021, including 1202 unique DropCatch.com registrars
- The registrar you choose becomes the **designated registrar** for your domain
  - Maximum period of registration for a domain name = 10 years
- The registry operator keeps the central registry database for the top-level domain
- Only the designated registrar can change information about domain names
  - A domain name owner may invoke a domain transfer process

Example

- Namecheap is the designated registrar for poopybrain.com
- VeriSign, Inc. is the registry operator for the .com gTLD

See https://www.icann.org/registrar-reports/accredited-list.html for the latest list of registrars

#### The problem

Every device connected to the internet has a unique Internet Protocol (IP) address

How do you resolve user-friendly machine names to IP addresses?

www.cs.rutgers.edu  $\longrightarrow$  128.6.4.24

# Original solution

In the early days (up through the 1980s)

- Search /etc/hosts file for machine name (see RFC 606)
- File periodically downloaded from Network Information Center (NIC) at the Stanford Research Institute (SRI)
- This was not sustainable with millions of hosts on the Internet
  - A lot of data
  - A lot of churn in the data: new hosts added, deleted, addresses changed
  - Maintenance
  - Traffic volume

#### Solution doesn't scale!

## DNS: Domain Name System

Distributed database: a hierarchy of name servers

- **DNS** is an application-layer protocol
  - Name-address resolution is handled at the edge
  - The network core is unaware of host names ... and does not care
  - There is no special relationship between names and addresses
    - Example: cs.poopybrain.com can resolve to cs.rutgers.edu

cs.poopybrain.com → cs.rutgers.edu

#### DNS servers provide...

- Name to IP address translation
- Aliasing of names (called canonical names)
- Identification of name servers
- Names of mail servers
- Load distribution:
  - Multiple name servers may handle a query for a domain
  - Caching store past look-ups
  - Ability to provide a set of IP addresses for a name

#### DNS is a distributed, hierarchical database



#### A collection of DNS servers

## Authoritative DNS server

- An authoritative name server is responsible for answering queries about its zone
  - Provides *real* answers vs. *cached* answers
  - Configured by the administrator
- Zone = group of machines under a node in the tree
   E.g., rutgers.edu

#### A DNS server returns answers to queries

#### Key data that a DNS server maintains (partial list)

| Information                | Abbreviation | Description                                                                                                                |
|----------------------------|--------------|----------------------------------------------------------------------------------------------------------------------------|
| Host                       | A            | Host address (name to address)<br>Includes name, IP address, time-to-live (TTL)                                            |
| Canonical name             | CNAME        | Name for an alias                                                                                                          |
| Mail exchanger             | MX           | Host that handles email for the domain                                                                                     |
| Name server                | NS           | Identifies the name server for the zone: tell<br>other servers that yours is the authority for<br>info within the domain   |
| Start of Zone<br>Authority | SOA          | Specifies authoritative server for the zone.<br>Identifies the zone, time-to-live, and primary<br>name server for the zone |

# Finding your way

- How do you find the DNS Server for rutgers.edu?
  - That's what the domain registry keeps track of
  - When you register a domain,
    - You supply the addresses of at least two DNS servers that can answer queries for your zone
    - You give this to the domain registrar, who updates the database at the domain registry
- So how do you find the right DNS server?
  - Start at the root

#### Root name servers

- The root name server answers can return a list of authoritative name servers for top-level domains
- 13 root name servers
  - A.ROOT-SERVERS.NET, B.ROOT-SERVERS.NET, ...
  - Each has redundancy (via anycast routing or load balancing)
    - Each server is really a set of machines



Download the latest list at http://www.internic.net/domain/named.root

## **DNS** Queries

- Iterative (non-recursive) name resolution
  - DNS server will return a definitive answer or a referral to another DNS server
    - *referral* = reference to a DNS server for a lower level of the queried namespace
    - · Server returns intermediate results to the client
    - 1. Send query to a root name server
    - 2. Send query to an edu name server
    - 3. Send query to a rutgers name server
  - Advantage: stateless
- Recursive DNS name resolution
  - Name server will take on the responsibility of fully resolving the name
    - May query multiple other DNS servers on your behalf
  - DNS server cannot refer the client to a different server
  - Disadvantage: name server has more work; has to keep track of state
  - Advantages: Caching opportunities, less work for the client!

Most top-level DNS servers only support iterative queries

#### DNS Resolvers: local name server

#### **DNS Resolver** = client side of DNS

- Not really a part of the DNS hierarchy
- Acts as an intermediary between programs that need to resolve names and the name servers
- A resolver is responsible for performing the full resolution of the query
- Where are the resolvers?
  - Each local system has one: that's what applications contact
    - Local cache; may be a process or a library
    - On Linux & Windows, these are limited DNS servers (called stub resolvers)
      - Usually not capable of handling referrals and expect to talk with a name server that can handle recursion (full resolution)
  - ISPs (and organizations) run them on behalf of their customers
    - Including a bunch of free ones (OpenDNS, Google Public DNS)
- Resolvers cache past lookups they are not responsible for zones

### **DNS** Resolvers in action



#### Local stub resolver:

- check local cache
- check local hosts file
- send request to external resolver

E.g., on Linux: resolver is configured via the /etc/resolv.conf file

#### **External resolver**

- DNS server that accepts recursion
- Running at ISP, Cloudflare, Google Public DNS, OpenDNS, etc.

## Sample query

- Rutgers registered rutgers.edu with the .edu domain
  - educause.net is the domain registry for the .edu gTLD
  - Registration includes defining the name servers for .rutgers.edu
    - ns124.a2.incapsecuredns.net: 192.230.123.124
    - ns8.a1.incapsecuredns.net: 192.230.122.8
    - ns87.a0.incapsecuredns.net: 192.230.121.87
- EDUCAUSE registered its name servers with root name servers
  - ns1.twtelecom.net
  - ns1.educause.edu
- Name servers for .edu
- ns1.twtelecom.net
- We know how to get to root name servers
  - Download <u>http://www.internic.net/domain/named.root</u>

# Sample Query

Submit query to a local DNS resolver:

- query(cs.rutgers.edu) → any root name server send query to f.root-servers.net: 192.5.5.241
- 2. Receive *referral* to a list of DNS servers for *edu* a.edu-servers.net: 192.5.6.30 ... d.edu-servers.net: 192.31.80.30 ...
- 3. query(cs.rutgers.edu) → edu name server send query to d.edu-servers.net: 192.31.80.30
- 4. Receive referral to rutgers.edu name servers:
  - dns2.rutgers.edu. 192.230.121.86
  - ns1.rutgers.edu. 192.230.122.7
  - ru-ufl.rutgers.edu. 192.230.123.123
  - ns6.dnsmadeeasy.com. 208.80.124.13
- query(cs.rutgers.edu) → rutgers name server send query to 208.80.124.13
- 6. The rutgers name server returns

   A 128.6.48.178
   MX 10 cs-rutgers-edu.mail.protection.outlook.com.
   mx (mail exchange): domain name for email

# Caching

- Starting every query at the root would place a huge load on root name servers
- A name server can **cache** results of previous queries
  - Save query results for a *time-to-live* amount of time
  - The time-to-live value is specified in the domain name record by an authoritative name server

# The End