Week 3: Part 3
Logical Clocks

Paul Krzyzanowski
Logical clocks

Assign sequence numbers to messages
- All cooperating processes can agree on order of events
- vs. physical clocks: report time of day

Assume no central time source
- Each system maintains its own local clock
- No total ordering of events
 - No concept of happened-when

• Assume multiple actors (processes)
 - Each process has a unique ID
 - Each process has its own incrementing counter
Lamport’s “happened-before” notation

\[a \rightarrow b \] event \(a \) happened before event \(b \)

e.g.: \(a \): message being sent, \(b \): message received

Transitive:

if \(a \rightarrow b \) and \(b \rightarrow c \) then \(a \rightarrow c \)
Logical clocks & concurrency

Assign a “clock” value to each event
- if $a \rightarrow b$ then $\text{clock}(a) < \text{clock}(b)$ since time cannot run backwards

If a and b occur on different processes that do not exchange messages, then neither $a \rightarrow b$ nor $b \rightarrow a$ are true
- These events are **concurrent**
- Otherwise, they are **causal**
Event counting example

• Three systems: P_1, P_2, P_3

• Events a, b, c, ...

• Local event counter on each system

• Systems occasionally communicate
Event counting example

Bad ordering:

\[e \rightarrow h \quad \text{but} \quad 5 \geq 2 \]
\[f \rightarrow k \quad \text{but} \quad 6 \geq 2 \]
Lamport Timestamps

- Each process has its own clock (sequence #)
- Clock is incremented before each event
- Each message carries a timestamp of the sender’s clock
- When a message arrives:

 \[\text{if receiver’s clock} \leq \text{message timestamp} \]

 set system clock to \((\text{message timestamp} + 1) \)

 set event timestamp to the system's clock

Lamport timestamps allow us to maintain time ordering among related events ⇒ **Partial ordering**
Event counting example

Applying Lamport timestamps

We have good ordering where we used to have bad ordering:

\[e \rightarrow h \text{ and } 5 < 6 \]
\[f \rightarrow k \text{ and } 6 < 7 \]
Summary

• Lamport timestamps need a monotonically increasing software counter

• Incremented when events that need to be timestamped occur
 – Every message that is sent contains the timestamp
 – Every received message sets the clock to $\max(\text{msg_timestamp} + 1, \text{clock})$
 – The event is associated with the value of the clock (Lamport timestamp)

• For any two events, where $a \rightarrow b$:
 \[L(a) < L(b) \]
Problem: Identical timestamps

a \rightarrow b, b \rightarrow c, \ldots : \text{local events sequenced}

i \rightarrow c, f \rightarrow d, d \rightarrow g, \ldots : \text{Lamport imposes a send} \rightarrow \text{receive relationship}

Concurrent events (e.g., b \& g; i \& k) \textbf{may} have the same timestamp \ldots \textbf{or not}
Unique timestamps (total ordering)

We can force each timestamp to be unique

- Define global logical timestamp \((T_i, i)\)
 - \(T_i\) represents local Lamport timestamp
 - \(i\) represents a globally unique process number
 - e.g., (host address, process ID)
- Compare timestamps:
 \[(T_i, i) < (T_j, j)\]
 if and only if
 \[T_i < T_j \text{ or } T_i = T_j \text{ and } i < j\]

Does not necessarily relate to actual sequence of events
Unique (totally ordered) timestamps

- P1: a (1.1), b (2.1), c (3.1), d (4.1), e (5.1), f (6.1)
- P2: g (1.2), h (6.2), i (7.2)
- P3: j (1.3), k (7.3)

Graphical representation of unique totally ordered timestamps.
Problem: Detecting causal relations

If $L(e) < L(e')$

- We cannot conclude that $e \rightarrow e'$

By looking at Lamport timestamps

- We cannot conclude which events are causally related

Solution: use a vector clock

Vector clocks are a way to prove the sequence of events by keeping a version history based on each process that created an event
Example

- Group of processes: Alice, Bob, Cindy, David
- They send messages to decide: “what food should we eat?”
- Each process keeps a local counter

Alice writes the value & sends to group

Alice: 1

Pizza

Bob reads (“Pizza”, <alice:1>), modifies the value & sends to group

Alice: 1, Bob: 1

Chinese

Bob’s version updates Alice’s choice

Alice reads (“Chinese”, <alice:1, bob:1>), modifies the value & sends to group

Alice: 2, Bob: 1

Moroccan

Alice makes changes over Bob’s choice

Receivers

<alice: 1, bob:1> is causal to & follows <alice: 1>

<alice: 2, bob:1> is causal to & follows <alice: 1, bob:1>

Group of processes:

Alice, Bob, Cindy, David

They send messages to decide:

“What food should we eat?”

Each process keeps a local counter.
Example

Cindy modifies the choice & sends to group

Alice: 2, Bob: 1, Cindy: 1

To Alice
To Bob
To David

Thai

Bob concurrently modifies & sends to group

Alice: 2, Bob: 2

To Alice
To Cindy
To David

Indian

Cindy & Bob’s changes are concurrent – members must resolve conflict

Receivers

<alice: 2, bob:1, cindy:1> is causal to & follows
<alice: 1, bob:1> and <alice: 2, bob:1>

Receivers

<alice: 2, bob:2> is causal to & follows
<alice: 1, bob:1> and <alice: 2, bob:1>

Receiver

<alice: 2, bob:1, cindy:1> is concurrent with <alice: 2, bob:2>
Vector clocks: Rules

1. Vector initialized to 0 at each process \(i \) for \(N \) processes
\[
V_i[j] = 0 \text{ for } i, j = 1, \ldots, N
\]

2. Process increments its element of the vector in local vector before timestamping event:
\[
V_i[i] = V_i[i] + 1
\]

3. Message is sent from process \(P_i \) with \(V_i \) attached to it

4. When \(P_j \) receives message, compares vectors element by element and sets local vector to higher of two values
\[
V_j[i] = \max(V_i[i], V_j[i]) \text{ for } i = 1, \ldots, N
\]

For example,
- We received: \([0, 5, 12, 1]\), we currently have: \([2, 8, 10, 1]\)
- The time vector will be updated to: \([2, 8, 12, 1]\)
Comparing vector timestamps

Define

\[V = V' \text{ iff } V[i] = V'[i] \text{ for } i = 1 \ldots N \]
\[V < V' \text{ iff } V \neq V' \text{ and } V[i] \leq V'[i] \text{ for } i = 1 \ldots N \]

For any two events e, e'

- if \(e \rightarrow e' \) then \(V(e) < V(e') \) \(\ldots \text{ just like Lamport timestamps} \)
- if \(V(e) < V(e') \) then \(e \rightarrow e' \)

Two events are **concurrent** if neither \(V(e) < V(e') \) nor \(V(e') < V(e) \)
Vector timestamps
Vector timestamps

Event timestamp
a (1,0,0)
Vector timestamps

Event timestamp

<table>
<thead>
<tr>
<th>Event</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>b</td>
<td>(2,0,0)</td>
</tr>
</tbody>
</table>

Diagram:

- P1: a → b with timestamp (0,0,0)
- P2: c → d with timestamp (1,0,0)
- P3: e → f with timestamp (2,0,0)
Vector timestamps

(0,0,0) a b (1,0,0) c d (2,0,0)
P1 P2 P3

(0,0,0) (2,1,0)

Event timestamp
a (1,0,0)
b (2,0,0)
c (2,1,0)
Vector timestamps

Event	timestamp
a | (1,0,0)
b | (2,0,0)
c | (2,1,0)
d | (2,2,0)
Vector timestamps

<table>
<thead>
<tr>
<th>Event</th>
<th>Timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>b</td>
<td>(2,0,0)</td>
</tr>
<tr>
<td>c</td>
<td>(2,1,0)</td>
</tr>
<tr>
<td>d</td>
<td>(2,2,0)</td>
</tr>
<tr>
<td>e</td>
<td>(0,0,1)</td>
</tr>
</tbody>
</table>

Diagram:
- Points a, b, c, d, e, f with timestamps (0,0,0), (1,0,0), (2,0,0), (2,1,0), (2,2,0), (0,0,1) respectively.
- Lines connecting points a to b, b to c, c to d, and d to e, with timestamps (1,0,0), (2,0,0), (2,1,0), (2,2,0), (0,0,1) respectively.
- Event timestamps:
 - a: (1,0,0)
 - b: (2,0,0)
 - c: (2,1,0)
 - d: (2,2,0)
 - e: (0,0,1)
Vector timestamps

<table>
<thead>
<tr>
<th>Event</th>
<th>timestamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>(1,0,0)</td>
</tr>
<tr>
<td>b</td>
<td>(2,0,0)</td>
</tr>
<tr>
<td>c</td>
<td>(2,1,0)</td>
</tr>
<tr>
<td>d</td>
<td>(2,2,0)</td>
</tr>
<tr>
<td>e</td>
<td>(0,0,1)</td>
</tr>
<tr>
<td>f</td>
<td>(2,2,2)</td>
</tr>
</tbody>
</table>
Vector timestamps

Event	timestamp
a | (1,0,0)
b | (2,0,0)
c | (2,1,0)
d | (2,2,0)
e | (0,0,1)
f | (2,2,2)

concurrent events
Vector timestamps

Event	timestamp
 a | (1,0,0)
b | (2,0,0)
c | (2,1,0)
d | (2,2,0)
e | (0,0,1)
f | (2,2,2)

concurrent events
Vector timestamps

Event	timestamp
a | (1,0,0)
b | (2,0,0)
c | (2,1,0)
d | (2,2,0)
e | (0,0,1)
f | (2,2,2)

Concurrent events:
- c and d have the same timestamp (2,2,0).
- e and f have the same timestamp (2,2,2).
Vector timestamps

Event	timestamp
a | (1,0,0)
b | (2,0,0)
c | (2,1,0)
d | (2,2,0)
e | (0,0,1)
f | (2,2,2)

concurrent events
Generalizing Vector Timestamps

• A “vector” can be a list of tuples instead of a vector of numbers:
 – For processes P_1, P_2, P_3, \ldots
 – Each process has a globally unique Process ID, P_i (e.g., MAC_address:PID)
 – Each process maintains its own timestamp: T_{P_1}, T_{P_2}, \ldots
 – Vector: $\{ <P_1, T_{P_1}>, <P_2, T_{P_2}>, <P_3, T_{P_3}>, \ldots \}$

• One process may only have only partial knowledge of others
 – New timestamp for a received message:
 • Compare all matching sets of process IDs: set to highest of values
 • Any non-matched $<P, T>$ sets get added to the timestamp
 – For a happened-before relation:
 • At least one set of process IDs must be common to both timestamps
 • Match all corresponding $<P, T>$ sets: $A: <P, T_a>, B: <P, T_b>$
 • If $T_a \leq T_b$ for all common processes P, then $A \rightarrow B$
Vector Clocks Summary

- Vector clocks give us a way of identifying which events are causally related
- We are guaranteed to get the sequencing correct

But
- The size of the vector increases with more actors
 ... and the entire vector must be stored with the data
- Comparison takes more time than comparing two numbers
- What if messages are concurrent?
 - App will have to decide how to handle conflicts
Summary: Logical Clocks & Partial Ordering

• **Causality**
 – If $a \rightarrow b$ then event a can affect event b

• **Concurrency**
 – If neither $a \rightarrow b$ nor $b \rightarrow a$ then one event cannot affect the other

• **Partial Ordering**
 – Causal events are sequenced

• **Total Ordering**
 – All events are sequenced
The End