Week 3: Part 1
Naming and binding
Naming things

Naming: map names to objects
- Helps with using, sharing, and communicating information

Examples
- **User names:** *used for system login, email, chat*
- **Machine names:** *used for ssh, email, web*
- Files
- Devices
- Objects, functions, variables in programs
- Network services
What’s a name?

Name: identifies what you want

Address: identifies where it is

Route: identifies how to get there

Binding: the association of a name with the object

“choose a lower-level-implementation for a higher-level semantic construct”

— RFC 1498: Inter-network Naming, addresses, routing

ls.cs.rutgers.edu → 128.6.13.171
Pure & Impure Names

Pure names – *identify*

- The name contains no information aside from the name
- It does not identify *where* the object can be found
- Examples:
 - c8:2a:14:3f:92:d1 my computer’s ethernet MAC address
 - p_k my Twitter handle
 - 908-555-3836 phone # (this used to be an impure name)
Impure names – *guide*

- The name contains context information
- Object is generally unmovable

Examples:

- `pk@pk.org, pxk@cs.rutgers.edu, happyuser@verizon.net`
 - User names in different Internet domains: same person or not?
 - Context (domain name) is encoded into the name

- `/home/paul/bin/qsync`
 - File pathname changes if we move the object
Uniqueness of names

• Easy on a small scale – problematic on a large scale
 – It can be difficult to make globally unique names

• Uniqueness for pure names
 – Designate a bit pattern or naming prefix that does not convey information
 • Ethernet MAC address: 3 bytes: organization, 3 bytes: controller
 • IP address: network & host (variable partition)

• Uniqueness for impure names — use a hierarchy
 – Compound name: iterative list of pure names connected with separators
 • Domain name: www.cs.rutgers.edu
 • URLs: https://pk.org/417/lectures/intro.html
 • File pathnames: /usr/share/dict/words
Naming convention determines syntax for names

- Ideally, a format that will suit the application and user
 • E.g., human readable names for humans, binary identifiers for machines

- UNIX file names:
 • Parse components from left to right separated by /
 /home/paul/src/gps/gui.c

- Internet domain names:
 • Ordered right to left and delimited by .
 www.cs.rutgers.edu

- LDAP names
 • Attribute/value pairs ordered right to left, delimited by ,
 cn=Paul Krzyzanowski, o=Rutgers, c=US
A particular set of name \rightarrow object bindings

- Names are unique within the context
 - E.g., /etc/postfix/main.cf on a specific computer

- Each context has an associated naming convention

- A name is always interpreted relative to some context
 - E.g., directory /usr in a Linux file system on crapper.pk.org
The service that performs name resolution

Allows you to resolve *names*
 - Looking up a *name* gives the corresponding *address* as a response

Can be implemented as
 - Search through file
 - Database query
 - Client-server program (*name server*) – may be distributed
 - …
Directory Service ≈ Name Service

Often completely synonymous with Name service

• Extension of name service:
 – Associates names with objects, where objects have attributes
 – Can query for specific attributes
 • Example: LDAP (Lightweight Directory Access Protocol)

• Sometimes refers to searching through a hierarchical namespace
Terms: Namespace = entire set of names

A container for a set of names in the naming system

• A namespace has a scope
 – **scope** = region where the name exists & refers to the object
 – For example,
 • Names of all files in a directory
 • All domain names within rutgers.edu
 • E.g., Java package, local variables

• A namespace may be tree structured (hierarchical)
 – Fully-qualified or hierarchical names may be used to identify names outside the local namespace
 – **Global namespace** = root of the tree
Terms: Resolution

• Resolution = name lookup
 – Return the underlying representation of the name
 – Look up the binding of the name to its object

• For example,
 – www.rutgers.edu → 128.6.4.5

• Iterative resolution
 – Example: parse a pathname

• Recursive resolution
 – Example: parse a distribution list: each entity may be expanded
When do should you do a resolution?

Static binding
- Hard-coded

Early binding
- Look up binding before use
- Cache previously used binding

Late binding
- Look up just before use

These can cause problems!
The End
IP Domain Names

Human readable names
e.g., www.cs.rutgers.edu

Hierarchical naming scheme
- Top of hierarchy on the right
- No relation to IP address or network class