
Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 1

Lectures on distributed systems

Clock Synchronization
Paul Krzyzanowski

When Charles V retired in weariness from the greatest throne in the
world to the solitude of the monastery at Yuste, he occupied his lei-
sure for some weeks trying to regulate two clocks. It proved very dif-
ficult. One day, it is recorded, he turned to his assistant and said: “To
think that I attempted to force the reason and conscience of thousands
of men into one mould, and I cannot make two clocks agree!”

Havelock Ellis,
The Task of Social Hygiene, Chapter 9

Introduction

Clock synchronization deals with understanding the temporal ordering of events produced by con-
current processes. It is useful for synchronizing senders and receivers of messages, determining
whether messages are related and their proper ordering, controlling joint activity, and serializing
concurrent access to shared objects. Multiple autonomous processes running on different ma-
chines need to be able to agree on and be able to make consistent decisions about the ordering of
certain events in a system.

Our real-world view of clock synchronization is one of ensuring that multiple processes on multi-
ple machines all see the same time of day. All modern computers have a time-of-day clock and
synchronization becomes a matter of keeping these clocks set to an agreed-upon value, usually
standard time as defined by UTC, Coordinated Universal Time.

Having synchronized clocks is extremely useful but is not always sufficient. Consider our ability to
identify the sequencing and interdependence of events, such as sending or receiving messages or
executing a transaction. A timestamp from a time-of-day clock on each such event will identify
when the event happened has two potential pitfalls.

First, if two events take place at approximately the same time, they may be reported as taking place
at the same time since timestamps have a limited precision. Worse, the clocks on different systems
may not be precisely synchronized so that an event on one computer may be assigned a later
timestamp than that on another even if it took place earlier in time than the other event. That
produces the false impression that the first event happened after the event that took place on the
other computer. As an example, consider the case where process A sends a message with an em-
bedded timestamp of 4:15:00 and machine B, on another computer, sends a message with a
timestamp of 4:15:05. It is quite possible that process B’s message was actually sent prior to that
of process A if B’s clock was over 5 seconds faster. Even if A’s and B’s clocks were synchronized,
it is likely that the clocks run at slightly different speeds, drift apart over time, and eventually re-
port different times.

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 2

Second, just by looking at two timestamps, you cannot tell if one event may be the result of anoth-
er event or if they are completely independent. The messages sent to have identical or even mis-
leading timestamps, as in the above example. If we use algorithms that rely on choosing one
timestamp over another, we may not be able to make a consistent decision either by comparing
two message timestamps. Worse yet, if we are using a distributed algorithm where each process
compares the timestamp in a received message with its own clock, there is no assurance that all
systems will yield the same result.

To enable us to get both the time of day as well as an ability to compare events in a meaningful
manner, we will use two forms of clocks: physical and logical clocks.

The concept of a logical clock is one where the clock does not have any bearing on the time of day
but rather is a number that can be used for comparing sets of events, such as a messages, within a
distributed system.

A physical clock, on the other hand, reports the time of day. Physical clock synchronization deals
with synchronizing time-of-day clocks among groups of machines. In this case, we want to ensure
that all machines can report the same time, regardless of how imprecise their clocks may be or
what the network latencies are between the machines.

Logical clocks

Let us consider cases that involve assigning sequence numbers (“timestamps”) to events upon
which all cooperating processes can agree. What matters in these cases is not the time of day at
which the event occurred but that all processes can agree on the order in which related events oc-
cur. Our interest is in getting event sequence numbers that make sense system-wide. These clocks
are called logical clocks.

If we can do this across all events in the system, we have something called total ordering: every
event is assigned a unique timestamp (number) and every such timestamp is unique. However, we
don’t always need total ordering. If processes do not interact then we do not care when their
events occur. If we only care about assigning timestamps to potentially related (causal) events, then
we have something known as partial ordering.

Leslie Lamport defined a happens before notation to express the relationship between events: a®b
means that a happens before b. If a represents the timestamp of a message sent and b is the
timestamp of that message being received, then a®b must be true; a message cannot be received
before it is sent. This relationship is transitive. If a®b and b®c then a®c. If a and b are events
that take place in the same process then a®b is true if a occurs before b.

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 3

With logical time, we would like to assign a
time value (sequence number) to each event
such that everyone will agree on the final
order of events. That is, if a®b then
clock(a) < clock(b) since the clock (our se-
quence generator) must never run back-
wards. If a and b occur on different pro-
cesses that do not exchange messages (even
through third parties) then a®b is not true.
These events are said to be concurrent: there
is no way that a could have influenced b.

Consider the sequence of events depicted in
Figure 1 taking place between three processes. Each event is assigned a timestamp by its respective
process. Each process simply maintains its own counter that is incremented before each event gets
a timestamp.

If we examine the timestamps from a global perspective, we can observe a number of peculiarities.
Event g, the event representing the receipt of the message sent by event a, has the exact same
timestamp as event a when it clearly had to take place after event a. Event e has an earlier time
stamp (1) than the event that sent the message (b), with a timestamp of 2).

Lamport’s algorithm remedies the situation by forcing a resequencing of timestamps to ensure
that the happens before relationship is properly depicted for events related to sending and receiving
messages. It works as follows:

Each process has its own clock, which can be a simple counter that is incremented
prior to each event.

The sending of a message is an event and each message carries with it a timestamp
obtained from the current value of the clock at that process (a sequence number).

The arrival of a message at a process is also an event and will therefore also receive
a timestamp – by the receiving process, of course. The process’ clock is increment-
ed prior to timestamping the event, as it would be for any other event. If the pro-
cess’ clock value is less than or equal to the timestamp in the received message, the
process’ clock is adjusted to the (message’s timestamp + 1). Otherwise nothing is
done. The event is now timestamped. This action ensures that the receipt of the
message and all subsequent events at that process will receive higher timestamp
values than that of sending the message.

If we apply Lamport’s algorithm to the same sequence of messages, we can see that proper mes-
sage ordering among causally related events is now preserved (Figure 2). Note that between every
two events, the clock must tick at least once.

Figure 1. Unsequenced event stamps

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 4

Lamport's algorithm allows us to maintain proper time ordering among causally-related events. In
summary, Lamport’s algorithm requires a monotonically increasing software counter for a “clock”
that has to be incremented at least when
events that need to be timestamped take
place. These events will have that clock val-
ue, called a Lamport timestamp, associated
with them. For any two events, where a®b,
L(a) < L(b) where L(x) represents the
Lamport timestamp for event x.

Lamport timestamps assure us that if there
is a causal relationship between two events
then the earlier event will have a smaller
timestamp than the later event. Causality is
achieved by successive events on one pro-
cess or by the sending and receipt of mes-
sages on different processes. As defined by
the happened-before relationship, causality is transitive. For instance, events a and f are causally relat-
ed in Figure 2 (through the sequence a, b, e, f).

Total ordering
Note that it is very possible for multiple non-causal (concurrent) events to share identical Lamport
timestamps (e.g., c, e, and h in Figure 2). This may cause confusion if multiple processes need to
make a decision based on the received timestamps of two concurrent events. The selection of one
event over the other may not matter if the
events are concurrent but we want all processes
to make the same decision. This is difficult if
the timestamps are identical. Fortunately,
there’s an easy remedy.

We can create a total order on events by further
qualifying them with process ID numbers. We
define a global logical timestamp (Ti,i) where Ti
represents the local Lamport timestamp and i
represents the process ID (in some globally
unique way; for example, a concatenation of
host address and process ID). We are then able
to globally compare these timestamps and con-
clude that

(Ti,i) < (Tj,j)
if and only if

Ti < Tj
or Ti = Tj and i < j.

Figure 2. Lamport sequenced event stamps

Figure 3. Totally ordered Lamport t imestamps

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 5

There is no physical significance to the order since process identifiers can be arbitrary and do not
relate to event ordering but the ability to ensure that no two Lamport timestamps are the same
globally is helpful in algorithms that need to compare these timestamps. Figure 3 shows an exam-
ple with a suffix of the process ID added to each timestamp. In real life, depending on the applica-
tion, one may use a combination of thread ID, process ID, and IP address as a qualifier to the
timestamp.

Vector clocks: identifying concurrent events
If two events are causally related and event e happened before event e’ then we know that L(e) <
L(e’). However, the converse is not necessarily true. With Lamport’s algorithm, if L(e) < L(e’) we
cannot conclude that e®e’. Hence, if we look at Lamport timestamps, we cannot conclude which
pairs of events are causally related and which are not. One solution that has been proposed to deal
with this problem is the concept of vector clocks (proposed by Mattern in 1989 and Fridge in 1991).

A vector clock in a system of N processes is a vector of N integers. Each process maintains its
own vector clock (Vi for a process Pi) to timestamp local events. Like Lamport timestamps, vector
timestamps (the vector of N integers) are sent with each message. The rules for using vector
clocks are:

1. The vector is initialized to 0 at all processes:
 Vi[j] = 0 for i,j = 1, …, N

2. Before a process Pi timestamps an event, it increments its element of the vector in its lo-
cal vector:
 Vi[i] = Vi[i]+1

3. A message is sent from process Pi with Vi attached to the message.

4. When a process Pj receives a vector timestamp t, it compares the two vectors element by
element, setting its local vector clock to the higher of the two values:
 Vj[i] = max(Vj[i], t[i]) for i=1, …, N

We compare two vector timestamps by defining:

 V = V’ iff V[j] = V’[j] for i=1, …, N

 V ≤ V’ iff V[j] ≤ V’[j] for i=1, …, N

For any two events e, e’, if e®e’ then V(e) < V(e’). This is the same as we get from Lamport’s al-
gorithm. With vector clocks, we now have the additional knowledge that if V(e) <V(e’) then e®e’.
Two events e, e’ are concurrent if neither V(e) ≤ V(e’) nor V(e’) ≤ V(e).

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 6

Figure 4. Messages with vector t imestamps

We can examine the events in Figure 4 with vector
clocks and see how events a and e can be determined
to be concurrent by comparing their vector
timestamps. If we do an element-by-element compari-
son, we see that each element in one timestamp is not
consistently less than or equal to its corresponding
element in the second timestamp. For example, ele-
ment 1 is greater in a than it is in e (1>0) but element
3 in a is less it is in e (0<1).

The disadvantage with vector clocks is the greater storage and message payload size since an entire
vector rather than a single integer must be sent and tracked. There may be cases where the group
of processes is either not known to all members or varies over time. In such cases, it does not
make sense to send a numeric vector where a process is identified by its position in the vector. In
these cases, we can represent the vector by a series of <process ID, timestamp> tuples where a pro-
cess ID, as we discussed earlier, may be a concatenation of a process ID and the host computer’s
address. To compare these vectors, we find matching process IDs and compare their timestamps.
If one vector is missing a process ID, then its value is implicitly 0.

Physical clocks

Most computers today keep track of the passage of time with a battery-backed-up CMOS clock
circuit, driven by a quartz resonator. This allows timekeeping to take place even if the machine or
the CPU is powered off. When on, an operating system will generally program a timer circuit (typi-
cally an Advanced Programmable Interrupt Controller, or APIC, in Intel-based systems) to gener-
ate an interrupt periodically. Many Linux systems, for example, 250 interrupts per second by de-
fault. The interrupt service procedure simply adds one to a counter in memory to maintain a
monotonically increasing value that represents the passage of time. This value is known as the soft-
ware clock or kernel clock to differentiate it from the hardware clock (also known as the CMOS clock).

While the best quartz resonators can achieve an accuracy of one second in 10 years, they are sensi-
tive to changes in temperature and acceleration and their resonating frequency can change as they
age. Standard resonators are accurate to 6 parts per million at 31° C, which corresponds to
±½ second per day.

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 7

Figure 5. Clock drift and clock skew

The problem with maintaining a concept of time is when multiple entities expect each other to
have the same idea of what the current time is. Two watches hardly ever agree. Computers have
the same problem: a quartz crystal on one computer will oscillate at a slightly different frequency
than on another computer, causing the clocks to tick at different rates. The phenomenon of clocks
ticking at different rates, creating an
ever widening gap in perceived time
is known as clock drift. The difference
between two clocks at any point in
time is called clock skew and is due to
both clock drift and the possibility
that the clocks may have been set
differently on different machines.
Figure 5 illustrates this phenomenon
with two clocks, A and B, where
clock B runs slightly faster than clock
A by approximately two seconds per
hour. This is the clock drift of B rela-
tive to A. At one point in time (five
seconds past five o'clock according to
A 's clock), the difference in time be-
tween the two clocks is approximately
four seconds. This is the clock skew
at that particular time.

Compensating for drift

We can envision clock drift graphically by considering true (UTC) time flowing on the x-axis and
the corresponding computer’s clock reading on the y-axis. A perfectly accurate clock will exhibit a
slope of one. A faster clock will create a slope greater than unity while a slower clock will create a
slope less than unity. Suppose that we have a means of obtaining the true time. One easy, and fre-
quently adopted, solution is to simply update the system time to the true time. This works well for
personal computers but may cause problems on servers and other systems that are actively running
processes as these processes may see a spontaneous change in time, possibly a jump back in time!
To avoid this, one constraint that we will impose on clock synchronization is that it is not a good
idea to set the clock back. The illusion of time moving backwards can confuse real-time-based
message ordering, users, and software development environments.

If a clock is fast, it simply has to be made to run slower until it synchronizes. If a clock is slow,
the clock can be made to run faster until it synchronizes. In theory, the operating system can do
this by changing the rate at which it requests interrupts. For example, suppose the system requests
an interrupt every 17 milliseconds (pseudo-milliseconds, really – the computer’s idea of what a
millisecond is) and the clock runs a bit too slowly. The system can request interrupts at a faster
rate, say every 16 or 15 milliseconds, until the clock catches up. However, this is not always a
practical approach since we may not have enough precision in the timer. It is easier to avoid muck-
ing around with the hardware and just redefine the rate at which system time is advanced with

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 8

each interrupt. Hence, whenever the operating system will read the software clock, it will apply an
adjustment to the counter to compensate for drift.

This adjustment changes the slope
of the system time and is known as
a linear compensation function (Fig-
ure 6). After the synchronization
period is reached, one can choose
to resynchronize periodically
and/or keep track of these adjust-
ments and apply them continually
to get a better running clock. This
is analogous to noticing that your
watch loses a minute every two
months and making a mental note
to adjust the clock by that amount
every two months (except the sys-
tem does it continually). For an
example of clock adjustment, see
the Linux man page for adjtime.

Setting the time on physical clocks

With physical clocks, our interest is not in advancing them just to ensure proper message ordering,
but to have the system clock keep good time. We looked at methods for adjusting the clock to
compensate for skew and drift, but it is essential that we can find the precise time first so that we
would know how we need to adjust our clock.

One possibility is to attach a GPS (Global Positioning System) receiver to each computer. A GPS
receiver will provide time from within ±100 ns1 to ±1 µs of UTC time. USB-connected ones can be
had for under US $30. Some devices, such as phones and tablets, have a GPS receiver built into
them (the chip cost is under $5). Unfortunately, they often do not work well indoors. If the ma-
chine is in the U.S., one can attach a WWV radio receiver to obtain time broadcasts from the Na-
tional Institute of Standards and Technology at Boulder, Colorado or Washington, DC, with accu-
racies of ±3–10 ms, depending on the distance from the source. Another option is to obtain a
GOES (Geostationary Operational Environment Satellites) receiver, which will provide time with-
in ± 0.1 ms of UTC time. For reasons of economy, convenience, and reception, these are not prac-
tical solutions for every machine. Most systems will set their time by asking another computer for
the time, preferably one with one of the aforementioned time sources connected to it. A computer
that provides this information is called a time server.

1 Just a reminder: 1ns is 1 nanosecond, or one billionth of a second. 1 µs is 1 microsecond, or one millionth
of a second. 1 ms is 1 millisecond, or 1 thousandth of a second.

Figure 6. Compensating for drift with a l inear compensation function

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 9

Cristian’s algorithm

The simplest method for setting the time would be simply to issue a remote procedure call to a
time server and obtain the time. The result, however, does not account for the network and pro-
cessing delay. Cristian’s algorithm improves this result by accounting for the latency of getting the
timestamp. We can compensate for this by measuring the time (in local system time) at which the
request is sent (T0) and the time at which the response is received (T1). Our best guess at the net-
work delay in each direction is to assume that the delays to and from are symmetric. The estimated
overhead due to the network delay is then (T1- T0)/2. The new time can be set to the time returned
by the server plus the time that elapsed since the server generated the timestamp:

The second part of Cristian’s algorithm is to place bounds on the accuracy of the result. Suppose
that we know the smallest time interval that it could take for a message to be sent between a client
and server (either direction). Let's call this time Tmin. This is the time when the network and CPUs
are completely unloaded. Knowing this value allows us to place bounds on the accuracy of the re-
sult obtained from the server. If we sent a request to the server at time T0, then the earliest time
stamp that the server could generate the timestamp is T0 + Tmin. The latest time that the server
could generate the timestamp is T1 - Tmin, where we assume it took only the minimum time, Tmin, to
get the response. The range of these times is: T1 - T0 - 2Tmin, so the accuracy of the result is:

Errors are cumulative. If process A synchronizes from a server B and gets an accuracy of ±5 ms
but server B in turn got its time from server C with an accuracy of ±7 ms, the net accuracy at ma-
chine A is ±(5+7), or ±12 ms.

Several time requests may be issued consecutively in the hope that one of the requests may be de-
livered faster than the others (e.g., it may be submitted during a time window when network activi-
ty is minimal). This can achieve improved accuracy since we can select the interaction with the
smallest round-trip time and hence the lowest error.

Cristian's algorithm suffers from the problem that afflicts all single-server algorithms: the server
might fail and clock synchronization will be unavailable. It may also be subject to malicious inter-
ference: a forged response may make the client set an incorrect time2.

Berkeley algorithm

The Berkeley algorithm, developed by Gusella and Zatti in 1989, does not assume that any ma-
chine has an accurate time source with which to synchronize. Instead, it opts for obtaining an av-
erage time from the participating computers and synchronizing all machines to that average.

2 Read up on the use of timestamps in guarding against replay attacks to see why a malicious party may want
to set a computer to the wrong time.

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 10

The computers involved in the synchronization each run a time dæmon3 process that is responsible
for implementing the protocol. One of these computers is elected (or designated) to be the master.
The others are slaves. The server polls
each computer periodically, asking it
for the time. The time at each system
may be estimated by using Cristian's
method to account for network delays,
if desired. When all the results are in,
the master computes the average time
(including its own time in the calcula-
tion). The hope is that the average can-
cels out the individual clock's tendencies to run fast or slow.

Instead of sending the updated time back to the slaves, which would introduce further uncertainty
due to network delays, it sends each computer the offset by which its clock needs adjustment. The
operation of this algorithm is illustrated in Figure 7. Three machines have times of 3:00, 3:25, and
2:50. The machine with the time of 3:00 is the server (master). It sends out a synchronization que-
ry to the other machines in the group. Each of these machines sends a timestamp as a response to
the query. The server now averages the three timestamps: the two it received and its own, compu-
ting (3:00+3:25+2:50)/3 = 3:05. Now it sends an offset to each machine so that the machine's
time will be synchronized to the average once the offset is applied. The computer with a time of
3:25 gets sent an offset of -0:20 and the computer with a time of 2:50 gets an offset of +0:15. The
server needs to adjust its own time by +0:05.

The algorithm also has provisions to ignore readings from clocks whose skew is too great. The
master may compute a fault-tolerant average – averaging values from machines whose clocks have not
drifted by more than a certain amount. If the master fails, any other slave could be elected to take
over.

Network Time Protocol (NTP)

The Network Time Protocol [1991, 1992, 2010] is an Internet standard (version 4, RFC 5905-5908)
whose goals are to:

- Enable clients across the Internet to be accurately synchronized to UTC (universal coordinated
time) despite message delays. Statistical techniques are used for filtering data and gauging the
quality of the results.

- Provide a reliable service that can survive lengthy losses of connectivity. This means having re-
dundant paths and redundant servers.

- Enable clients to synchronize frequently and offset the effects of clock drift.

- Provide protection against interference; authenticate that the data is from a trusted source.

3 A dæmon is a program that runs in the background.

Figure 7. Berkeley synchronization algorithm

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 11

NTP servers are arranged into strata. The first stratum contains the primary servers, which are
computers that are connected directly to an accurate time source (the time source hardware itself
is considered to be at stratum 0). The second stratum contains the secondary servers. These ma-
chines that synchronized from the primary stratum machines. The third stratum contains tertiary
servers that synchronized from the secondaries, and so on. Together, all these servers form the
synchronization subnet (Figure 8).

A computer will often try to synchronize with several servers, using the best of all the results to
set its time. The best result is a function of a number of qualities, including: round-trip delay, con-
sistency of the delay, round-trip error, server’s stratum, the accuracy of the server’s clock, the last
time the server’s clock was synchronized, and the estimated drift on the server.

Because a system may synchronize with multiple servers, its stratum is dynamic: it is based on the
server used for the latest synchronization. If you synchronized from a secondary NTP server then
you are in the third stratum. If, next time, you used a primary NTP server to synchronize, you are
now in the second stratum.

Computers synchronize in one of the following modes:

- Symmetric active/passive mode: This is intended for synchronization among a set of low-stratum
NTP time servers to enable the servers to operate as mutual backups for each other. If one of
the systems in the group loses its access to time servers or ceases to run, other servers in the
group can take over. In this mode of operation, a host announces its willingness to synchronize
and be synchronized by the peer. This mode offers the highest accuracy and is intended for use
by master servers. A pair of servers exchanges messages with each other containing timing in-
formation. Timing data are retained to improve
accuracy in synchronization over time.

- Procedure call mode: This is the most common mode
of operation and is similar to Cristian’s algorithm.
A client announces its willingness to by synchro-
nized by the server, but not to synchronize the
server.

- Broadcast/multicast mode: This is intended for high speed LANs, particularly those with a large
number of clients. In this mode, the server sends a broadcast message containing a time stamp at
regular intervals. Multicast mode is similar but uses IP multicast, which directs the messages to a
group of systems that registered their interest in receiving these messages. The broad-
cast/multicast mode offers relatively low accuracy since there is no way to account for network
delays, but is acceptable for many applications, particularly when servers and clients are on the
same high-speed local area network.

Figure 8. NTP synchronization subnet

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 12

All messages are delivered unreliably via UDP4. In both the procedure call mode and symmetric
mode, messages are exchanged in pairs. Each message has the following timestamps:

 Ti-3: local time when previous NTP message was sent.

 Ti-2: local time when previous NTP message was received.

 Ti-1: local time when current NTP message was sent.

The server notes its local time, Ti. For each pair, NTP calculates the offset (estimate of the actual
offset between two clocks) and delay (total transit time for two messages). In the end, a process
determines three products:

1. Clock offset: this is the amount that the local clock needs to be adjusted to have it correspond to
a reference clock.

2. Roundtrip delay: this provides the client with the capability to launch a message to arrive at the
reference clock at a particular time; it gives us a measure of the transit time of the message to a
particular time server.

3. Dispersion: this is the “quality of estimate” based on the accuracy of the server’s clock and the
consistency of the network transit times. It represents the maximum error of the local clock
relative to the reference clock.

By performing several NTP exchanges with several servers, a process can determine which server
to favor. The preferred ones are those with a lower stratum and the lowest total filter dispersion.
A higher stratum (less accurate) time source may be chosen if the communication to the more ac-
curate servers is less predictable.

The Simple Network Time Protocol, SNTP (RFC 2030), is a subset of the Network Time Protocol that
allows operation in a stateless remote procedure call mode or multicast mode. It is not a new pro-
tocol but just a subset of NTP. It is intended for environments when the full NTP implementation
is not needed or is not justified. The intention is that SNTP be used at the ends of the synchroni-
zation subnet (high strata) rather than for synchronizing time servers.

SNTP can operate in either a unicast, multicast, or anycast modes:

- In unicast mode, a client sends a request to a designated server.

- In multicast mode, a server periodically sends a broadcast or multicast message and expects no
requests from clients. This matches NTP’s multicast mode and suffers from the same problem:
there is no ability to estimate the delay.

4 Using a reliable protocol, such as TCP, will introduce significant asymmetric latencies whenever packet
loss occurs.

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 13

- In anycast mode, a client sends a request to a local broadcast or multicast address and takes the
first response received by responding servers. From then on, the protocol proceeds as in
unicast mode.

NTP and SNTP messages are both sent via UDP. The message structure contains:

Leap indicator warns of impending leap second (last minute has either 59, 60, or 61
seconds)

Version number

Mode symmetric active, symmetric passive, client, server, broadcast

Stratum stratum

Poll interval maximum interval between successive messages (power of 2)

Precision 8-bit signed integer indicating the precision of the local clock, seconds
to nearest power of two

Root delay 32-bit number indicating total roundtrip delay to primary reference
source (16 bit seconds, and 16 bits of decimal seconds)

Root dispersion 32-bit number indicating the nominal error relative to the primary refer-
ence source

Reference identifier identify the reference source – four character ASCII string. Possible
sources are: local uncalibrated clock, atomic clock, NIST dial-up modem
service, USNO modem service, PTB (Germany) dial-up modem service,
Allouis (France) radio, Boulder (CO, USA) radio, LORAN-C radionaviga-
tion system, Global Positioning System (GPS), Geostationary Orbit Envi-
ronment Satellite(GOES), & cetera.

Reference timestamp time at which local clock was last set or corrected

Originate timestamp time at which request departed the client for the server

Receive timestamp time at which the request arrived at the server

Transmit timestamp time at which the reply departed the server

Key identifier used if the NTP authentication scheme is implemented

Message digest used if the NTP authentication scheme is implemented

In unicast mode, the roundtrip delay and local offset are calculated as follows:

1. The client sets the transmit timestamp in the request to the time of day according to the client
clock. (T1).

2. The server copies this field to the originate timestamp in the reply and sets the receive
timestamp and transmit timestamps to the time of day according to the server clock (T2, T3).

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 14

3. When the server reply is received, the client determines a destination timestamp as the time of
arrival according to its clock (T4).

Timestamp name ID when generated

originate timestamp T1 time request sent by client

receive timestamp T2 time request received by server

transmit timestamp T3 time reply sent by server

destination timestamp T4 time reply received by client

The roundtrip delay d is defined as:

 d = (T4 – T1) – (T2 – T3)

Note that the delay estimates the time spent sending and receiving data over the network, and sub-
tracts out the processing delay at the server. The local clock offset t is defined as:

t = ((T2 – T1) + (T3 – T4)) / 2

The client, after computing this offset, adds this amount to its clock.

Clock Synchronization

Rutgers University – CS 417: Distributed Systems
©2000-2016 Paul Krzyzanowski 15

References

Time, Clocks, and the Ordering of Events in a Distributed System, Leslie Lamport, Communications of
the ACM, July 1978, Volume 21, Number 7, pp. 558-565.

The Network Time Protocol (NTP) Distribution, The Network Time Foundation, http://doc.ntp.org

Distributed Systems: Concepts and Design, G. Coulouris, J. Dollimore, T. Kindberg, ©1996 Addison
Wesley Longman, Ltd.

Distributed Operating Systems, Andrew Tanenbaum, © 1995 Prentice Hall.

Modern Operating Systems, Andrew Tanenbaum, ©1992 Prentice Hall.

RFC1305: Network Time Protocol version 3. This can be found in many locations. One place is
http://www.faqs.org/rfcs/rfc1305.html

RFC 2030: Simple Network Time Protocol version 4. This can be found in many places. One place is
http://www.faqs.org/rfcs/rfc2030.html

