
CS 417 26 November 2018

Paul Krzyzanowski 1

Distributed Systems
25. Authentication

Paul Krzyzanowski

Rutgers University

Fall 2018

1November 26, 2018 © 2018 Paul Krzyzanowski

Authentication

• For a user (or process):
– Establish & verify identity
– Then decide whether to allow access to resources (= authorization)

2November 26, 2018 © 2017-2017 Paul Krzyzanowski

Authentication

Three factors:
– something you have key, card

• Can be stolen

– something you know passwords
• Can be guessed, shared, stolen

– something you are biometrics
• Usually needs hardware, can be copied (sometimes)
• Once copied, you’re stuck

3November 26, 2018 © 2017-2017 Paul Krzyzanowski

Multi-Factor Authentication
Factors may be combined
– ATM machine: 2-factor authentication

• ATM card something you have
• PIN something you know

– Password + code delivered via SMS: 2-factor authentication
• Password something you know
• Code validates that you possess your phone

Two passwords ≠ Two-factor authentication

4November 26, 2018 © 2017-2017 Paul Krzyzanowski

Authentication: PAP

Password Authentication Protocol

login, password

OKclient server

• Unencrypted, reusable passwords

• Insecure on an open network
• Also, password file must be protected from open access

– But administrators can still see everyone’s passwords

5

name:password
database

November 26, 2018 © 2017-2017 Paul Krzyzanowski

PAP: Reusable passwords
PROBLEM: Open access to the password file

What if the password file isn’t sufficiently protected and an intruder gets
hold of it? All passwords are now compromised!

Even if a trusted admin sees your password, this might also be your
password on other systems.

Solution:

Store a hash of the password in a file
– Given a file, you don’t get the passwords
– Have to resort to a dictionary or brute-force attack
– Example, passwords hashed with SHA-512 hashes (SHA-2)

6November 26, 2018 © 2017-2017 Paul Krzyzanowski

CS 417 26 November 2018

Paul Krzyzanowski 2

What is salt?

• How to speed up a dictionary attack

– Create a table of precomputed hashes

– Search(hashed_password) → original_password

• How to stop dictionary attacks

Salt = random string (typically up to 16 characters)

– Concatenated with the password

– Stored with the password file (it’s not secret)

– Even if you know the salt, you cannot use precomputed hashes to

search for a password (because the salt is prefixed)

– Makes a table of precomputed hashes prohibitively huge

November 26, 2018 © 2017-2017 Paul Krzyzanowski 7

Authentication: CHAP

Challenge-Handshake Authentication Protocol

challenge

hash(challenge, secret)

OK

client server

Has shared secret Has shared secret

The challenge is a nonce (random bits).

We create a hash of the nonce and the secret.

An intruder does not have the secret and cannot do this!

8

= nonce

November 26, 2018 © 2017-2017 Paul Krzyzanowski

CHAP authentication

Alice network host

“alice” “alice” look up alice’s
key, K

generate random
challenge number CC

R ’ = f(K,C)

R ’ R = f(K, C)

R = R ’ ?“welcome”

an eavesdropper does not see K

9November 26, 2018 © 2017-2017 Paul Krzyzanowski

Time-Based Authentication
Time-based One-time Password (TOTP) algorithm

• Both sides share a secret key

• User runs TOTP function to generate a one-time password
one_time_password = hash(secret_key, time)

• User logs in with:
Name, password, and one_time_password

• Service generates the same password
one_time_password = hash(secret_key, time)

November 26, 2018 CS 419 © 2018 Paul Krzyzanowski 10

Public Key Authentication

11November 26, 2018 © 2017-2017 Paul Krzyzanowski

Public key authentication

• Alice wants to authenticate herself to Bob:

• Bob: generates nonce, S
– Sends it to Alice

• Alice: encrypts S with her private key (signs it)
– Sends result to Bob

Demonstrate we can encrypt or decrypt a nonce
This shows we know the key

A random
bunch of bits

12November 26, 2018 © 2017-2017 Paul Krzyzanowski

CS 417 26 November 2018

Paul Krzyzanowski 3

Public key authentication

Bob:
1. Look up “alice” in a database of public keys
2. Decrypt the message from Alice using Alice’s public key
3. If the result is S, then Bob is convinced he’s talking with Alice

For mutual authentication, Alice has to present Bob with a
nonce that Bob will encrypt with his private key and return

13November 26, 2018 © 2017-2017 Paul Krzyzanowski

Public key authentication

• Public key authentication relies on binding identity to a
public key
– How do you know it really is Alice’s public key?

• One option:
get keys from a trusted source

• Problem: requires always going to the source
– cannot pass keys around

• Another option: sign the public key
– Contents cannot be modified
– digital certificate

14November 26, 2018 © 2017-2017 Paul Krzyzanowski

X.509 v3 Digital Certificate

Certificate data Signature

X.509 Certificates

ISO introduced a set of authentication protocols
X.509: Structure for public key certificates:

Subject

Distinguished name Public key
(algorithm & key)

version serial # algorithm
Issuer

Distinguished
Name

Validity
(from-to)

Signature
Algorithm

Signature
(signed by CA)

Issuer = Certification Authority (CA)

Name, organization, locality, state, country, etc.

15November 26, 2018 © 2017-2017 Paul Krzyzanowski

Reminder: What’s a digital signature?
Hash of a message encrypted with the signer’s private key

November 26, 2018 © 2017-2017 Paul Krzyzanowski 16

Alice Bob

H(P)

DA(S)

H(P)

S=Ea(H(P)) =?

X.509 certificates

When you get a certificate
– Verify its signature:

• hash contents of certificate data
• Decrypt CA’s signature with CA’s public key

Obtain CA’s public key (certificate) from trusted source

Certificates prevent someone from using a phony public key
to masquerade as another person

…if you trust the CA

17November 26, 2018 © 2017-2017 Paul Krzyzanowski

SSL/TLS

18November 26, 2018 © 2017-2017 Paul Krzyzanowski

CS 417 26 November 2018

Paul Krzyzanowski 4

Transport Layer Security
• Provide a transport layer security protocol

• After setup, applications feel like they are using TCP sockets

SSL: Secure Socket Layer

• Created with HTTP in mind
– Web sessions should be secure
– Mutual authentication is usually not needed

• Client needs to identify the server but the server won’t know all clients
• Rely on passwords after the secure channel is set up

• SSL evolved to TLS (Transport Layer Security)
– SSL 3.0 was the last version of SSL … and is considered insecure
– We use TLS now … but often still call it SSL

November 26, 2018 © 2017-2017 Paul Krzyzanowski 19

Transport Layer Security (TLS)

• aka Secure Socket Layer (SSL), which is an older protocol

• Sits on top of TCP/IP

• Goal: provide an encrypted and possibly authenticated

communication channel

– Provides authentication via RSA and X.509 certificates

– Encryption of communication session via a symmetric cipher

• Hybrid cryptosystem: (usually, but also supports Diffie-Hellman)

– Public key for authentication

– Symmetric for data communication

• Enables TCP services to engage in secure, authenticated transfers

– http, telnet, ntp, ftp, smtp, …

20November 26, 2018 © 2017-2017 Paul Krzyzanowski

TLS Protocol
(1) Client hello

Version & crypto information

(2) Server hello

Server certificate
[client certificate request](3) Verify server

certificate

(4) Client key exchange

Send encrypted session key

[(5) Send client certificate]

[(6) Verify server
certificate]

(7) Client done

(8) Server done

(9) Communicate

Symmetric encryption + HMAC

November 26, 2018 © 2017-2017 Paul Krzyzanowski 21

OAuth 2.0

22November 26, 2018 © 2017-2017 Paul Krzyzanowski

Service Authorization

• You want an app to access your data at some service
– E.g., access your Google calendar data

• But you want to:
– Not reveal your password to the app
– Restrict the data and operations available to the app
– Be able to revoke the app’s access to the data

November 26, 2018 © 2017-2017 Paul Krzyzanowski 23

OAuth 2.0: Open Authorization

• OAuth: framework for service authorization
– Allows you to authorize one website (consumer) to access data from

another website (provider) – in a restricted manner

– Designed initially for web services

– Examples:
• Allow the Moo photo printing service to get photos from your Flickr account
• Allow the NY Times to tweet a message from your Twitter account

• OpenID Connect
– Remote identification: use one login for multiple sites

– Encapsulated within OAuth 2.0 protocol

24November 26, 2018 © 2017-2017 Paul Krzyzanowski

CS 417 26 November 2018

Paul Krzyzanowski 5

OAuth setup

• OAuth is based on
– Getting a token from the service provider & presenting it each time an

application accesses an API at the service
– URL redirection
– JSON data encapsulation

• Register a service
– Service provider (e.g., Flickr):

• Gets data about your application (name, creator, URL)
• Assigns the application (consumer) an ID & a secret
• Presents list of authorization URLs and scopes (access types)

25November 26, 2018 © 2017-2017 Paul Krzyzanowski

Authorization
server

Service
provider

OAuth Entities

Service Provider

Application

You

You want moo.com to access your photos on flickr

26November 26, 2018 © 2017-2017 Paul Krzyzanowski

{app ID, secret}

{app ID, secret}

How does authorization take place?
• Application needs an Access Token from the Service

(e.g., moo.com needs an access token from flickr.com)

– Application redirects user to Service Provider
• Request contains: client ID, client secret, scope (list of requested APIs)
• User may need to authenticate at that provider
• User authorizes the requested access
• Service Provider redirects back to consumer with a one-time-use authorization code

– Application now has the Authorization Code
• The previous redirect passed the Authorization Code as part of the HTTP request –

therefore not encrypted

– Application exchanges Authorization Code for Access Token
• The legitimate app uses HTTPS (encrypted channel) & sends its secret
• The application now talks securely & directly to the Service Provider
• Service Provider returns Access Token

– Application makes API requests to Service Provider using the Access Token

27November 26, 2018 © 2017-2017 Paul Krzyzanowski

Authorization
server

Service
provider

OAuth Entities

Service Provider

Application

You

You want moo.com to access your photos on flickr

28November 26, 2018 © 2017-2017 Paul Krzyzanowski

{app ID, secret}

{app ID, secret}

Authorization
server

Service
provider

OAuth Entities

Service Provider

Application

You

Moo.com app redirects you to the service provider

29November 26, 2018 © 2017-2017 Paul Krzyzanowski

{app ID, secret}

{app ID, secret}

REDIRECT: client ID, client secret, scope (list of requested APIs)

Authorization
server

Service
provider

OAuth Entities

Service Provider

Application

You

You authenticate (optional) & authorize the request at flickr

30November 26, 2018 © 2017-2017 Paul Krzyzanowski

{app ID, secret}

{app ID, secret}

Authenticate

CS 417 26 November 2018

Paul Krzyzanowski 6

Authorization
server

Service
provider

OAuth Entities

Service Provider

Application

You

Flicker sends a redirect back with an authorization code

31November 26, 2018 © 2017-2017 Paul Krzyzanowski

{app ID, secret}

{app ID, secret}

REDIRECT: authorization code

Authorization
server

Service
provider

OAuth Entities

Service Provider

Application

You

Moo requests an access token (securely)

32November 26, 2018 © 2017-2017 Paul Krzyzanowski

{app ID, secret}

{app ID, secret}

Establish TLS session
Request Access Token

Authorization
server

Service
provider

OAuth Entities

Service Provider

Application

You

Moo requests an access token (securely)

33November 26, 2018 © 2017-2017 Paul Krzyzanowski

Access Token

Authorization
server

Service
provider

OAuth Entities

Service Provider

Application

You

Moo requests an access token (securely)

34November 26, 2018 © 2017-2017 Paul Krzyzanowski

API requests: f(access_token)

User interaction

Key Points

• You may still need to log into the
Provider’s OAuth service when
redirected

• You approve the specific access
that you are granting

• The Service Provider validates
the requested access when it
gets a token from the Consumer

35

Play with it at the OAuth 2.0 Playground:
https://developers.google.com/oauthplayground/

November 26, 2018 © 2017-2017 Paul Krzyzanowski

Identity Federation: OpenID Connect

36November 26, 2018 © 2017-2017 Paul Krzyzanowski

CS 417 26 November 2018

Paul Krzyzanowski 7

Single Sign-On: OpenID Connect

• Designed to solve the problem of

– Having to get an ID per service (website)

– Managing passwords per site

– Layer on top of OAuth 2.0

• Decentralized mechanism for single sign-on

– Access different services (sites) using the same identity

• Simplify account creation at new sites

– User chooses which OpenID provider to use

• OpenID does not specify authentication protocol – up to provider

– Website never sees your password

• OpenID Connect is a standard but not the only solution

– Used by Google, Microsoft, Amazon Web Services, PayPal, Salesforce, …

– Facebook Connect – popular alternative solution

(similar in operation but websites can share info with Facebook, offer friend

access, or make suggestions to users based on Facebook data)

37November 26, 2018 © 2017-2017 Paul Krzyzanowski

OpenID Connect Authentication

• OAuth requests that you specify a “scope”
– List of access methods that the app needs permission to use

• To enable user identification
– Specify “openid” as a requested scope

• Send request to server (identity provider)
– Server requests user ID and handles authentication

• Get back an access token
– If authentication is successful, the token contains:

• user ID
• approved scopes

• expiration
• etc.

November 26, 2018 © 2017-2017 Paul Krzyzanowski 38

same as with OAuth requests for authorization

Cryptographic toolbox

• Symmetric encryption

• Public key encryption

• One-way hash functions

• Random number generators
– Used for nonces and session keys

39November 26, 2018 © 2017-2017 Paul Krzyzanowski

Examples

• Key exchange
– Public key cryptography

• Key exchange + secure communication
– Random # + Public key + symmetric cryptography

• Authentication
– Nonce (random #) + encryption

• Message authentication codes
– Hashes

• Digital signature
– Hash + encryption with private key

40November 26, 2018 © 2017-2017 Paul Krzyzanowski

The End

November 26, 2018 41© 2018 Paul Krzyzanowski

