
Distributed Systems
23. Clusters

Paul Krzyzanowski

Rutgers University

Fall 2018

1November 26, 2018 © 2014-2018 Paul Krzyzanowski

Computer System Design

Highly Available Systems
• Incorporate elements of fault-

tolerant design
– Replication, TMR

• Fully fault tolerant system will
offer non-stop availability
– But you can’t achieve this!

Problem:
– ↑ in availability ⇒ ↑ $$

Highly Scalable Systems
• SMP architecture

Problem:

Performance gain as f(# processors)
is sublinear

– Contention for resources
(bus, memory, devices)

– Also … the solution is expensive!

2November 26, 2018 © 2014-2018 Paul Krzyzanowski

Clustering

Achieve reliability and scalability by interconnecting
multiple independent systems

Cluster:
A group of standard, autonomous servers configured so
they appear on the network as a single machine

Single system image

3November 26, 2018 © 2014-2018 Paul Krzyzanowski

Ideally…

• Bunch of off-the shelf machines

• Interconnected on a high speed LAN

• Appear as one system to users

• Processes are load-balanced across the cluster

– May migrate

– May run on different systems

– All IPC mechanisms and file access available

• Fault tolerant

– Components may fail

– Machines may be taken down

4November 26, 2018 © 2014-2018 Paul Krzyzanowski

We don�t get all that (yet)

… at least not in one general purpose package

5November 26, 2018 © 2014-2018 Paul Krzyzanowski

Clustering types

• High availability (HA)
– Failover cluster

• Supercomputing (HPC)
– Includes batch processing

• Load balancing

• Storage

6November 26, 2018 © 2014-2018 Paul Krzyzanowski

High Availability (HA) Clustering

7November 26, 2018 © 2014-2018 Paul Krzyzanowski

Cluster Components

8November 26, 2018 © 2014-2018 Paul Krzyzanowski

Cluster Components

• Cluster membership

• Heartbeat & heartbeat network

• Quorum

• Configuration & service management

• Storage

9November 26, 2018 © 2014-2018 Paul Krzyzanowski

Cluster membership

• Software to manage cluster membership
– What are the nodes in the cluster?
– Which nodes in the cluster are currently alive (active)?

• We saw this:
– Group Membership Service in virtual synchrony
– GFS master, HDFS Namenode
– Bigtable master
– Pregel master
– MapReduce & Spark masters

10November 26, 2018 © 2014-2018 Paul Krzyzanowski

Quorum

• Some members may be dead or disconnected

• Quorum
– Number of elements that must be online for the cluster to function
– Voting algorithm to determine whether the set of nodes has quorum

(a majority of nodes to keep running)

• We saw this with Paxos & Raft
– Forcing a majority avoids split-brain

• Quorum disk
– Shared storage: whichever node can reserve the disk owns it
– Enables systems to resolve who runs a service in small clusters even

if the network becomes partitioned

11November 26, 2018 © 2014-2018 Paul Krzyzanowski

Types of Quorum
• Node Majority

– Each available node can vote
– Need majority (over 50%) of votes for the cluster to continue running
– Best for odd number of nodes, larger clusters

• Node & Disk Majority (Microsoft Disk Witness)
– Designated shared disk = disk witness: counts as a vote
– Need majority of votes to continue running
– Best for an even # of nodes in one site

• Node & File Share Majority (Microsoft File Share Witness)
– Shared file system = file share witness : counts as a vote
– Need majority of votes to continue running
– Windows Server 2019: File Share Witness on USB stick

• Shared USB storage on router
– Best for an even # of nodes in a multi-site cluster

• No majority
– Custer has quorum if one node is available and can communicate with a specific

disk in the cluster
– Best for an even # of nodes (e.g., 2) with no shared storage

November 26, 2018 © 2014-2018 Paul Krzyzanowski 12

Cluster configuration & service management

• Cluster configuration system
– Manages configuration of systems and software in a cluster
– Runs in each cluster node

• Changes propagate to all nodes
• Administrator has a single point of control

• Service management
– Identify which applications run where
– Specify how failover occurs

• Active: system runs a service
• Standby: Which system(s) can run the service if the active dies

– E.g., MapReduce, Pregel, Spark all use coordinators

13November 26, 2018 © 2014-2018 Paul Krzyzanowski

Disks

14November 26, 2018 © 2014-2018 Paul Krzyzanowski

Shared storage access

• If an application can run on any machine, how does it
access file data?

• If an application fails over from one machine to another,
how does it access its file data?

• Can applications on different machines share files?

15November 26, 2018 © 2014-2018 Paul Krzyzanowski

Network (Distributed) File Systems

One option:
– Network file systems: NFS, SMB, AFS, AFP, etc.
– Works great for many applications

• Concerns
– Availability

• Address with replication (most file systems offer little)

– Performance
• Remote systems on a LAN vs. local bus access
• Overhead of remote operating system & network stack
• Point of congestion
• Look at GFS/HDFS to distribute file data across lots of servers

… or other parallel file systems, such as Lustre, GlusterFS, or Ceph

16November 26, 2018 © 2014-2018 Paul Krzyzanowski

Shared disks & Cluster file systems

• Shared disk
– Allows multiple systems to share access to disk drives
– Works well if there isn’t much contention

• Cluster File System
– Client runs a file system accessing a shared disk at the block level

• vs. a distributed file system, which access at a file-system level
– No client/server roles, no disconnected modes
– All nodes are peers and access a shared disk(s)
– Distributed Lock Manager (DLM)

• Process to ensure mutual exclusion for disk access
• Provides inode-based locking and caching control
• Not needed for local file systems on a shared disk

17November 26, 2018 © 2014-2018 Paul Krzyzanowski

Cluster File Systems

• Examples:

– IBM General Parallel File System (GPFS)

– Microsoft Cluster Shared Volumes (CSV)

– Oracle Cluster File System (OCFS)

– Red Hat Global File System (GFS2)

• Linux GFS2 (no relation to Google GFS)

– Cluster file system accessing storage at a block level
– Cluster Logical Volume Manager (CLVM): volume management of cluster

storage

– Global Network Block Device (GNBD): block level storage access over
ethernet: cheap way to access block-level storage

18November 26, 2018 © 2014-2018 Paul Krzyzanowski

The alternative: shared nothing

Shared nothing
– No shared devices

– Each system has its own storage resources

– No need to deal with DLMs

– If a machine A needs resources on B, A sends a message to B

• If B fails, storage requests have to be switched over to a live node

• Need exclusive access to shared storage
– Multiple nodes may have access to shared storage

– Only one node is granted exclusive access at a time – one owner
– Exclusive access changed on failover

19November 26, 2018 © 2014-2018 Paul Krzyzanowski

SAN: Computer-Disk interconnect

• Storage Area Network (SAN)

• Separate network between nodes and storage arrays

– Fibre channel

– iSCSI

• Any node can be configured to access any storage through

a fibre channel switch

• Acronyms

– DAS: Direct Attached Storage

– SAN: block-level access to a disk via a network

– NAS: file-level access to a remote file system (NFS, SMB,…)

20November 26, 2018 © 2014-2018 Paul Krzyzanowski

Failover

21November 26, 2018 © 2014-2018 Paul Krzyzanowski

HA issues

• How do you detect failover?

• How long does it take to detect?

• How does a dead application move/restart?

• Where does it move to?

22November 26, 2018 © 2014-2018 Paul Krzyzanowski

Heartbeat network

• Machines need to detect faulty systems
– Heartbeat: Periodic �ping� mechanism
– An “are you alive” message

• Need to distinguish system faults from network faults
– Useful to maintain redundant networks
– Avoid split-brain issues in systems without quorum

(e.g., a 2-node cluster)

• Once you know who is dead or alive, then determine a
course of action

23November 26, 2018 © 2014-2018 Paul Krzyzanowski

Failover Configuration Models

• Active/Passive
– Requests go to active system
– Passive nodes do nothing until they’re needed
– Passive nodes maintain replicated state (e.g., SMR/Virtual Synchrony)

– Example: Chubby

• Active/Active
– Any node can handle a request
– Failed workload goes to remaining nodes
– Replication must be N-way for N active nodes

• Active/Passive: N+M
– M dedicated failover node(s) for N active nodes

24November 26, 2018 © 2014-2018 Paul Krzyzanowski

Design options for failover
• Cold failover

– Application restart
– Example: map and reduce workers in MapReduce

• Warm failover
– Restart last checkpointed image
– Relies on application checkpointing itself periodically
– Example: Pregel

• Hot failover
– Application state is synchronized across systems

• E.g., replicated state machines or lockstep synchronization at the CPU level
– Spare is ready to run immediately
– May be difficult at a fine granularity, prone to software faults (e.g., what if a

specific set of inputs caused the software to die?)
– Example: Chubby

25November 26, 2018 © 2014-2018 Paul Krzyzanowski

Design options for failover

• With either type of failover …

• Multi-directional failover
– Failed applications migrate to / restart on available systems

• Cascading failover
– If the backup system fails, application can be restarted on another

surviving system

26November 26, 2018 © 2014-2018 Paul Krzyzanowski

IP Address Takeover (IPAT)
Depending on the deployment:

• Ignore
– IP addresses of services don’t matter. A load balancer, name

server, or coordinator will identify the correct machine

• Take over IP address
– A node in an active/passive configuration may need to take over

the IP address of a failed node

• Take over MAC address
– MAC address takeover may be needed if we cannot guarantee that

other nodes will flush their ARP cache

• Listen on multiple addresses
– A node in an active/active configuration may need to listen on

multiple IP addresses

27November 26, 2018 © 2014-2018 Paul Krzyzanowski

Hardware support for High Availability

• Hot-pluggable components
– Minimize downtime for component swapping
– E.g., disks, power supplies, CPU/memory boards

• Redundant devices
– Redundant power supplies
– Parity on memory
– Mirroring on disks (or RAID for HA)
– Switchover of failed components

• Diagnostics
– On-line identification & service

28November 26, 2018 © 2014-2018 Paul Krzyzanowski

Fencing

• Fencing: method of isolating a node from a cluster
– Apply to failed node
– Disconnect I/O to ensure data integrity
– Avoid problems with Byzantine failures
– Avoids problems with fail-restart

• Restarted node has not kept up to date with state changes

• Types of fencing
– Power fencing: shut power off a node
– SAN fencing: disable a Fibre Channel port to a node
– System service fencing: disable access to a global network block

device (GNBD) server
– Software fencing: remove server processes from the group

• E.g., virtual synchrony

29November 26, 2018 © 2014-2018 Paul Krzyzanowski

Cluster software hierarchy

Example: Windows Server cluster abstractions

Bottom tier: OS and drivers
– Cluster disk driver, cluster network drivers
– IP address takeover

Middle tier: Distributed operations
– Global status update
–Membership
– Quorum (leader election)

Top tier: Cluster abstractions
– Failover manager (what needs to be started/restarted?)
– Resource monitor (what’s going on?)
– Cluster registry (who belongs in the cluster?)

30November 26, 2018 © 2014-2018 Paul Krzyzanowski

High Performance Computing
(HPC)

31November 26, 2018 © 2014-2018 Paul Krzyzanowski

Supercomputers

2018’s Most powerful supercomputer:
IBM AC922 – Summit at Oak Ridge National Laboratory

November 26, 2018 © 2014-2018 Paul Krzyzanowski 32

• 189 petaflops, >10PB memory
• 4,608 nodes

– 6 NVIDIA Volta V100s GPUs
– 2 IBM POWER9™ CPUs
– 512 GB DDR4 + 96GB HBM2 RAM
– 1600GB NV memory
– 42 teraflops per node

• 100G InfiniBand interconnect
• 250 PB 2.5 TB/s file system
• OS: Red Hat Enterprise Linux
• Peak power consumption: 13 MW

See https://www.olcf.ornl.gov/summit/

>27,000 GPUs
>9,000 CPUs

• Supercomputers are not distributed computers

• Lots of processors connected by high-speed networks

• Shared memory access

• Shared operating system (all TOP500 run Linux)

November 26, 2018 © 2014-2018 Paul Krzyzanowski 33

Supercomputing clusters

• Supercomputing cluster

– Build a supercomputer from commodity computers & networks

– A distributed system

• Target complex, typically

scientific, applications:

– Large amounts of data

– Lots of computation

– Parallelizable application

• Many custom efforts

– Typically Linux + message passing software + remote exec +

remote monitoring

34November 26, 2018 © 2014-2018 Paul Krzyzanowski

Interconnect

35November 26, 2018 © 2014-2018 Paul Krzyzanowski

Cluster Interconnect
• Provide communication

between nodes in a cluster
• Goals

– Low latency
• Avoid OS overhead, layers of

protocols, retransmission, etc.
– High bandwidth

• High bandwidth, switched links
• Avoid overhead of sharing traffic

with non-cluster data
– Low CPU overhead
– Low cost

• Cost usually matters if you’re
connecting thousands of
machines

• Usually a LAN is used:
best $/performance ratio

36

Rack 1
40-80 computers

Cluster
1,000s to 10,000+ computers

switch switch switch

Rack 2 Rack N

switch switch

ISPs

Datacenter

November 26, 2018 © 2014-2018 Paul Krzyzanowski

Cluster Interconnect

37

Cluster of 4×4 racks

Cluster

Switch

Assume:

10 Gbps per server

40 servers per rack

⇒ 400 Gbps/rack

16 racks

⇒ 8 Tbps

Max switch capacity

currently ~ 5 Tbps

⇒ Need at least two

cluster switches

November 26, 2018 © 2014-2018 Paul Krzyzanowski

Switches add latency
• Within one rack

– One switch latency ≈ <1…8 μs for a 10 Gbps switch
– Two links (to switch + from switch) @ 1-2 meters of cable

• Propagation time in copper ≈ 2×108 m/s ≈ 5 ns/m

• Between racks in a cluster
– Three switch latency (≈ <3…24 μs)
– 4 links (to rack switch + to cluster switch + back to target rack)
– ~10-100 meters distance (50 … 500 ns)

• Plus the normal latency of sending & receiving packets:
– System latency of processing the packet, OS mode switch, queuing the

packet, copying data to the transceiver, …
– Serialization delay = time to copy packet to media ≈ 1 μs for a 1KB

packet on a 10 Gbps link

38November 26, 2018 © 2014-2018 Paul Krzyzanowski

Dedicated cluster interconnects

• TCP adds latency
– Operating system overhead, queueing, checksums,

acknowledgements, congestion control, fragmentation & reassembly,
…

– Lots of interrupts
– Consumes time & CPU resources

• How about a high-speed LAN without the overhead?
– LAN dedicated for intra-cluster communication

• Sometimes known as a System Area Network (SAN)
– Dedicated network for storage: Storage Area Network (SAN)

39November 26, 2018 © 2014-2018 Paul Krzyzanowski

Example High-Speed Interconnects

Common traits
– TCP/IP Offload Engines (TOE) – TCP stack at the switch
– Remote Direct Memory Access (RDMA) – memory copy with no CPU

involvement
– Intel I/O Acceleration Technology (I/OAT) – combines TOE & RDMA – data

copy without CPU, TCP packet coalescing, low-latency interrupts, …

Example: InfiniBand
– Switch-based point-to-point bidirectional serial links
– Link processors, I/O devices, and storage
– Each link has one device connected to it
– Enables data movement via remote direct memory access (RDMA)

• No CPU involvement!

– Up to 250 Gbps/link
• Links can be aggregated: up to 3000 Gbps with 12x links

40November 26, 2018 © 2014-2018 Paul Krzyzanowski

Example High-Speed Interconnects
• Myricom’s Myrinet

– 10 Gbps Ethernet
– PCI Express x8 connectivity
– Low-latency, high-bandwidth, interprocess communication between nodes
– Firmware offloads TCP functionality onto the card

• Aggregate bandwidth of ~19.8 Gb/s
– Example: used in IBM’s Linux Cluster Solution

• IEEE 802.1 Data Center Bridging (DCB)
– Set of standards that extend Ethernet
– Lossless data center transport layer

• Priority-based flow control, congestion notification, bandwidth management

41November 26, 2018 © 2014-2018 Paul Krzyzanowski

Programming tools: PVM

• PVM: Parallel Virtual Machine
• Software that emulates a general-purpose heterogeneous

computing framework on interconnected computers

• Model: app = set of tasks
– Functional parallelism: tasks based on function: input, solve, output
– Data parallelism: tasks are the same but work on different data

• PVM presents library interfaces to:
– Create tasks
– Use global task IDs
– Manage groups of tasks
– Pass basic messages between tasks

42November 26, 2018 © 2014-2018 Paul Krzyzanowski

Programming tools: MPI

MPI: Message Passing Interface

• API for sending/receiving messages
– Optimizations for shared memory & NUMA
– Group communication support

• Other features:
– Scalable file I/O
– Dynamic process management
– Synchronization (barriers)
– Combining results

43November 26, 2018 © 2014-2018 Paul Krzyzanowski

Clustering for performance

• Example: Early (>20 years old!) effort on Linux – Beowulf
– Initially built to address problems associated with large data sets in

Earth and Space Science applications
– From Center of Excellence in Space Data & Information Sciences

(CESDIS)
• Division of University Space Research Association at the Goddard

Space Flight Center
– Still used!

• This isn’t one fixed package
– Just an example of putting tools together to create a

supercomputer from commodity hardware

44November 26, 2018 © 2014-2018 Paul Krzyzanowski

What makes it possible?

• Commodity off-the-shelf computers are cost effective

• Publicly available software:
– Linux, GNU compilers & tools
– MPI (message passing interface)
– PVM (parallel virtual machine)

• Low cost, high speed networking

• Experience with parallel software
– Difficult: solutions tend to be custom

45November 26, 2018 © 2014-2018 Paul Krzyzanowski

What can you run?

• Programs that do not require fine-grain communication

• Basic properties
– Nodes are dedicated to the cluster

• Performance of nodes not subject to external factors

– Interconnect network isolated from external network
• Network load is determined only by application

– Global process ID provided
• Global signaling mechanism

46November 26, 2018 © 2014-2018 Paul Krzyzanowski

HPC example

• Rocks Cluster Distribution
– Employed on over 1,300 clusters
– Mass installation is a core part of the system

• Mass re-installation for application-specific configurations
– Front-end central server + compute & storage nodes
– Based on CentOS Linux
– Rolls: collection of packages

• Base roll includes: PBS (portable batch system), PVM (parallel virtual
machine), MPI (message passing interface), job launchers, …

49November 26, 2018 © 2014-2018 Paul Krzyzanowski

Another example: Microsoft HPC Pack
• Clustering package for Windows & Windows Server

– Supports on-premises & on-demand computers deployed in Azure

• Systems Management
– Management Console: plug-in to System Center UI with support for

Windows PowerShell
– RIS (Remote Installation Service)

• Networking
– MS-MPI (Message Passing Interface)
– ICS (Internet Connection Sharing) : NAT for cluster nodes
– Network Direct RDMA (Remote DMA)

• Job scheduler

• Storage: iSCSI SAN and SMB support

• Failover support

50

See http://www.microsoft.com/hpc/en/us/product/cluster-computing.aspx

November 26, 2018 © 2014-2018 Paul Krzyzanowski

Microsoft HPC Pack

51

See http://www.microsoft.com/hpc/en/us/product/cluster-computing.aspx

Compute Nodes

Head
Node

Broker
Nodes

Private network (optional)

Enterprise Network

• Head node
– Cluster management
– Provides failover
– Mediates access to cluster
– Job scheduler

• Queues jobs
• Initiates tasks on compute nodes
• Monitors status of jobs & nodes

• Broker nodes
– Load balances service requests
– Return results to client

• Compute nodes
– Carry out work assigned by

job scheduler

November 26, 2018 © 2014-2018 Paul Krzyzanowski

Batch Processing

52November 26, 2018 © 2014-2018 Paul Krzyzanowski

Batch processing

• Non-interactive processes
– Schedule, run eventually, collect output

• Examples:
– MapReduce, many supercomputing tasks (circuit simulation,

climate simulation, physics simulation)
– Graphics rendering

• Maintain a queue of frames to be rendered
• Have a dispatcher to remotely exec process

• In many cases – minimal or no IPC needed

• Coordinator dispatches jobs

53November 26, 2018 © 2014-2018 Paul Krzyzanowski

Single-queue work distribution: Render Farms
Examples:

• Pixar:
– 24,000 cores on 2,000 Dell render blades running Linux and Renderman
– Custom Linux software for articulating, animating/lighting (Marionette),

scheduling (Ringmaster), and rendering (RenderMan)
– Took over two years (real time!) to render Monsters University (2013)
– Average time to render a single frame

• Cars (2006): 8 hours
• Cars 2 (2011): 11.5 hours
• Disney/Pixar’s Coco – Up to 100 hours to render one frame

http://venturebeat.com/2013/04/24/the-making-of-pixars-latest-technological-marvel-monsters-university/2/
http://news.cnet.com/8301-13772_3-20068109-52/new-technology-revs-up-pixars-cars-2/

54November 26, 2018 © 2014-2018 Paul Krzyzanowski

Batch Processing

• OpenPBS.org:
– Portable Batch System
– Developed by Veridian MRJ for NASA

• Commands
– Submit job scripts

• Submit interactive jobs
• Force a job to run

– List jobs
– Delete jobs
– Hold jobs

56November 26, 2018 © 2014-2018 Paul Krzyzanowski

Load Balancing

57November 26, 2018 © 2014-2018 Paul Krzyzanowski

Functions of a load balancer

• Load balancing

• Failover

• Planned outage management

58November 26, 2018 © 2014-2018 Paul Krzyzanowski

Redirection

Simplest technique

HTTP REDIRECT error code

59November 26, 2018 © 2014-2018 Paul Krzyzanowski

Redirection

Simplest technique

HTTP REDIRECT error code

www.mysite.com

60November 26, 2018 © 2014-2018 Paul Krzyzanowski

Redirection

Simplest technique

HTTP REDIRECT error code

www.mysite.com

REDIRECT
www03.mysite.com

61November 26, 2018 © 2014-2018 Paul Krzyzanowski

Redirection

Simplest technique

HTTP REDIRECT error code

www03.mysite.com

62November 26, 2018 © 2014-2018 Paul Krzyzanowski

Redirection

• Trivial to implement

• Successive requests automatically go to the same web
server
– Important for sessions

• Visible to customer
– Don’t like the changing URL

• Bookmarks will usually tag a specific site

63November 26, 2018 © 2014-2018 Paul Krzyzanowski

Load balancing router

As routers got smarter
– Not just simple packet forwarding
– Most support packet filtering
– Add load balancing to the mix

– This includes most IOS-based Cisco routers, Radware Alteon,
F5 Big-IP

64November 26, 2018 © 2014-2018 Paul Krzyzanowski

Load balancing router

• Assign one or more virtual addresses to physical address
– Incoming request gets mapped to physical address

• Special assignments can be made per port
– e.g., all FTP traffic goes to one machine

• Balancing decisions:
– Pick machine with least # TCP connections
– Factor in weights when selecting machines
– Pick machines round-robin
– Pick fastest connecting machine (SYN/ACK time)

• Persistence
– Send all requests from one user session to the same system

65November 26, 2018 © 2014-2018 Paul Krzyzanowski

DNS-based load balancing

• Round-Robin DNS
– Respond to DNS requests with a list of addresses instead of one
– The order of the list is permuted with each response

• Geographic-based DNS response
– Multiple clusters distributed around the world
– Balance requests among clusters
– Favor geographic proximity
– Examples:

• BIND with Geodns patch
• PowerDNS with geobackend
• Amazon Route 53

67November 26, 2018 © 2014-2018 Paul Krzyzanowski

The end

68November 26, 2018 © 2014-2018 Paul Krzyzanowski

