
Distributed Systems
20. Spanner

Paul Krzyzanowski

Rutgers University

Fall 2018

1November 12, 2018 © 2014-2018 Paul Krzyzanowski



Spanner
(Google’s successor to Bigtable … sort of)

2November 12, 2018 © 2014-2018 Paul Krzyzanowski



Spanner

3

Spanner
• Globally distributed multi-version database
• ACID (general purpose transactions)

• Schematized tables (Semi-relational)
– Built on top of a key-value based implementation
– SQL-like queries

• Lock-free distributed read transactions

Take Bigtable and add:
• Familiar SQL-like multi-table, row-column data model
– One primary key per table

• Synchronous replication (Bigtable was eventually consistent)

• Transactions across arbitrary rows

Goal: make it easy for programmers to use
Working with eventual consistency & merging is hard ⇒ don't make developers deal with it

November 12, 2018 © 2014-2018 Paul Krzyzanowski



Data Storage
• Tables sharded across rows into 
tablets (like bigtable)

• Tablets stored in spanservers

• 1000s of spanservers per zone
– Collection of servers – can be run 

independently

• Zonemaster
Allocates data to spanservers

• Location proxies
Locate spanservers with needed data

• Universemaster
Tracks status of all zones

• Placement driver
Transfers data between zones

4

SpanserverSpanserverSpanserver

Zonemaster

Location 
Proxy

Zo
ne

 1 SpanserverSpanserverSpanserver

Zonemaster

Location 
Proxy

Zo
ne

 2 SpanserverSpanserverSpanserver

Zonemaster

Location 
Proxy

Zo
ne

 N

Universemaster Placement Driver



Data Storage

November 12, 2018 © 2014-2018 Paul Krzyzanowski 5

Universe: holds one or more databases

Database: holds one or more tables

Table: rows & columns

Shards (tablets): pieces of tables
Replicated synchronously via Paxos

Data in table is versioned & 
has a timestamp

Directory: “bucket” – set of contigious keys with a common prefix
Unit of data movement between Paxos groups

Transactions across shards use two-phase commit



Transactions

• ACID properties

• Transactions are serialized: strict 2-phase locking used

6

1. Acquire all locks
– do work –

2. Get a commit timestamp
3. Log the commit timestamp via Paxos to majority of replicas
4. Do the commit

–Apply changes locally & to replicas
5. Release locks

November 12, 2018 © 2014-2018 Paul Krzyzanowski



2-Phase locking can be slow

We can use read locks and write locks

But
– read locks block behind write locks
– write locks block behind read locks

Multiversion concurrency to the rescue!
– Take a snapshot of the database for transactions up to a point in time
– You can read old data without getting a lock

• Great for long-running reads (e.g., searches)
– Because you are reading before a specific point in time

• Results are consistent

We need commit timestamps that will enable meaningful snapshots

7November 12, 2018 © 2014-2018 Paul Krzyzanowski



Getting good commit timestamps

• Vector clocks work

– Pass along current server’s notion of time with each message

– Receiver updates its concept of time (if necessary)

• But not feasible in large systems

– Pain in HTML (have to embed vector timestamp in HTTP transaction)

– Doesn’t work if you introduce things like phone call logs

• Spanner: use physical timestamps
– If T1 commits before T2,
T1 must get a smaller timestamp

– Commit order matches global wall-time order

8November 12, 2018 © 2014-2018 Paul Krzyzanowski



TrueTime

Remember: we can’t know global time across servers!

• Global wall-clock time = time + interval of uncertainty
– TT.now().earliest = time guaranteed to be <= current time

– TT.now().latest = time guaranteed to be >= current time

• Each data center has a GPS receiver & atomic clock

• Atomic clock synchronized with GPS receivers
– Validates GPS receivers

• Spanservers periodically synchronize with time servers
– Know uncertainty based on interval
– Synchronize ~ every 30 seconds: clock uncertainty < 10 ms

9November 12, 2018 © 2014-2018 Paul Krzyzanowski



Commit Wait

We don’t know the exact time
… but we can wait out the uncertainty

10

1. Acquire all locks
– do work –

2. Get a commit timestamp: t = TT.now().latest
3. Commit wait: wait until TT.now().earliest > t
4. Commit
5. Release locks

average worst-case wait is ~10 ms

November 12, 2018 © 2014-2018 Paul Krzyzanowski



Integrate replication with concurrency control

11

1. Acquire all locks
– do work –

2. Get a commit timestamp: t = TT.now().latest

3. (a) Start consensus for replication
(b) Commit wait (in parallel)

4. Commit

5. Release locks

Make the replicas & wait 
for all to finish

November 12, 2018 © 2014-2018 Paul Krzyzanowski



Spanner Summary

• Semi-relational database of tables
– Supports externally consistent distributed transactions
– No need for users to try deal with eventual consistency

• Multi-version database

• Synchronous replication
• Scales to millions of machines in hundreds of data centers

• SQL-based query language

• Used in F1, the system behind Google’s Adwords platform

• May be used in Gmail & Google search and others…

12November 12, 2018 © 2014-2018 Paul Krzyzanowski



Are we breaking the rules?

• Global ordering of transactions
– Systems cannot have globally synchronized clocks
– But we can synchronize closely enough that we can wait until we

are sure a specific time has passed

• CAP theorem
– We cannot offer Consistency + Availability + Partition tolerance
– Spanner is a CP system
– If there is a partition, Spanner chooses C over A
– In practice, partitions are rare - ~8% of all failures of Spanner

• Spanner uses Google’s private global network, not the Internet
• Each data center has at least three independent fiber connections

– In practice, users can feel they have a CA system

November 12, 2018 © 2014-2018 Paul Krzyzanowski 13

https://storage.googleapis.com/pub-tools-public-publication-data/pdf/45855.pdf



Spanner Conclusion

• ACID semantics not sacrificed
– Life gets easy for programmers
– Programmers don’t need to deal with eventual consistency

• Wide-area distributed transactions built-in
– Bigtable did not support distributed transactions
– Programmers had to write their own
– Easier if programmers don’t have to get 2PC right

• Clock uncertainty is known to programmers
– You can wait it out

14November 12, 2018 © 2014-2018 Paul Krzyzanowski



The end

15November 12, 2018 © 2014-2018 Paul Krzyzanowski


