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Distributed Lookup

• Look up (key, value)
• Cooperating set of nodes

• Ideally:
– No central coordinator
– Some nodes can be down
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Approaches

1. Central coordinator
– Napster

2. Flooding
– Gnutella

3. Distributed hash tables
– CAN, Chord, Amazon Dynamo, Tapestry, …
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1. Central Coordinator
• Example: Napster

– Central directory
– Identifies content (names) and the servers that host it 
– lookup(name) → {list of servers}
– Download from any of available servers

• Pick the best one by pinging and comparing response times

• Another example: GFS
– Controlled environment compared to Napster
– Content for a given key is broken into chunks
– Master handles all queries … but not the data
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1. Central Coordinator - Napster

• Pros
– Super simple
– Search is handled by a single server (master)
– The directory server is a single point of control

• Provides definitive answers to a query

• Cons
– Master has to maintain state of all peers
– Server gets all the queries
– The directory server is a single point of control

• No directory, no service!
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2. Query Flooding

• Example: Gnutella distributed file sharing

• Well-known nodes act as anchors
– Nodes with files inform an anchor about their existence
– Nodes select other nodes as peers
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2. Query Flooding

• Send a query to peers if a file is not present locally
– Each request contains:

• Query key
• Unique request ID
• Time to Live (TTL, maximum hop count)

• Peer either responds or routes the query to its neighbors
– Repeat until TTL = 0 or if the request ID has been processed
– If found, send response (node address) to the requestor
– Back propagation: response hops back to reach originator
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Overlay network
An overlay network is a virtual network formed by peer connections

– Any node might know about a small set of machines
– “Neighbors” may not be physically close to you
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Underlying IP Network
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Overlay network
An overlay network is a virtual network formed by peer connections

– Any node might know about a small set of machines
– “Neighbors” may not be physically close to you
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Overlay Network
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Flooding Example: Overlay Network
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Flooding Example: Query Flood
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TTL = Time to Live (hop count)

Flooding Example: Query response

Found!
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Back propagation

Result

Result
Result
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Flooding Example: Download
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Request download
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What’s wrong with flooding?

• Some nodes are not always up and some are slower than 
others
– Gnutella & Kazaa dealt with this by classifying some nodes as special 

(“ultrapeers” in Gnutella, “supernodes” in Kazaa,)

• Poor use of network resources

• Potentially high latency
– Requests get forwarded from one machine to another

– Back propagation (e.g., in Gnutella’s design), where the replies go 
through the same chain of machines used in the query, increases 
latency even more
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3. Distributed Hash Tables
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Hash tables

• Remember hash functions & hash tables?
– Linear search: O(N)
– Tree: O(logN)
– Hash table: O(1)
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What’s a hash function? (refresher)
• Hash function

– A function that takes a variable length input (e.g., a string) 
and generates a (usually smaller) fixed length result (e.g., an integer)

– Example: hash strings to a range 0-7:
• hash(“Newark”) → 1
• hash(“Jersey City”) → 6
• hash(“Paterson”) → 2

• Hash table
– Table of (key, value) tuples
– Look up a key:

• Hash function maps keys to a range 0 … N-1
table of N elements
i = hash(key)
table[i] contains the item

– No need to search through the table!
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Considerations with hash tables (refresher)

• Picking a good hash function

– We want uniform distribution of all values of key over the space 0 … N-1

• Collisions

– Multiple keys may hash to the same value
• hash(“Paterson”) → 2

• hash(“Edison”) → 2

– table[i] is a bucket (slot) for all such (key, value) sets

– Within table[i], use a linked list or another layer of hashing

• Think about a hash table that grows or shrinks

– If we add or remove buckets → need to rehash keys and move items
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Distributed Hash Tables (DHT)

Create a peer-to-peer version of a (key, value) data store

How we want it to work
1. A peer (A) queries the data store with a key
2. The data store finds the peer (B) that has the value
3. That peer (B) returns the (key, value) pair to the querying peer (A)

Make it efficient!
– A query should not generate a flood!

20

A

B C

D E

query(key)

value
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Consistent hashing

• Conventional hashing
– Practically all keys have to be remapped if the table size changes

• Consistent hashing
– Most keys will hash to the same value as before
– On average, K/n keys will need to be remapped

K = # keys,  n = # of buckets

Example: splitting a bucket

slot a slot b slot c slot d slot e

slot a slot b slot c1 slot d slot eslot c2

Only the keys in slot c get remapped
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3. Distributed hashing
• Spread the hash table across multiple nodes
• Each node stores a portion of the key space

lookup(key) → node ID that holds (key, value)
lookup(node_ID, key) → value

Questions
How do we partition the data & do the lookup?
& keep the system decentralized?

& make the system scalable (lots of nodes with dynamic changes)?
& fault tolerant (replicated data)?
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Distributed Hashing
Case Study

CAN: Content Addressable Network
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CAN design

• Create a logical grid
– x-y in 2-D (but not limited to two dimensions)

• Separate hash function per dimension
– hx(key), hy(key)

• A node
– Is responsible for a range of values in each dimension

– Knows its neighboring nodes
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CAN key→node mapping: 2 nodes

y=0

y=ymax

x=xmaxx=0

n1 n2

x = hashx(key)

y = hashy(key)

if x < (xmax/2)
n1 has (key, value)

if x ≥ (xmax/2)
n2 has (key, value)

xmax/2

n2 is responsible for a zone
x=(xmax/2 .. xmax),
y=(0 .. ymax)

25
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CAN partitioning

y=0

y=ymax

x=xmaxx=0

n1

n2

Any node can be split in 
two – either horizontally 
or vertically

n0

ymax/2

xmax/2

26October 29, 2018 © 2014-2018 Paul Krzyzanowski

CAN key→node mapping

y=0

y=ymax

x=xmaxx=0

n1

n2

x = hashx(key)

y = hashy(key)

if x < (xmax/2) {

if y < (ymax/2) 

n0 has (key, value)

else

n1 has (key, value)

}

if x ≥ (xmax/2)

n2 has (key, value)

n0

ymax/2

xmax/2
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CAN partitioning

y=0

y=ymax

x=xmaxx=0

Any node can be split in 
two – either horizontally 
or vertically

Associated data has to 
be moved to the new 
node based on 
hash(key)

Neighbors need to be 
made aware of the new 
node

A node knows only of its 
neighbors

n4

ymax/2

xmax/2

n0

n1

n8 n10

n9

n7

n3

n5 n6

n2

n11
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CAN neighbors

y=0

y=ymax

x=xmaxx=0

Neighbors refer to 
nodes that share 
adjacent zones in the 
overlay network

n4 only needs to keep 
track of n5, n7, or n8 as 
its right neighbor.

n4
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29October 29, 2018 © 2014-2018 Paul Krzyzanowski

CAN routing

y=0

y=ymax

x=xmaxx=0

lookup(key) on a node 
that does not own the 
value

Compute
hashx(key), hashy(key) 
and route request to a 
neighboring node

Ideally: route to 
minimize distance to 
destinationn4

ymax/2

xmax/2

n0

n1

n8 n10

n9

n7

n3

n5 n6

n2

n11
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CAN

• Performance
– For n nodes in d dimensions
– # neighbors = 2d
– Average route for 2 dimensions = O(√n) hops

• To handle failures
– Share knowledge of neighbor’s neighbors
– One of the node’s neighbors takes over the failed zone
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Distributed Hashing
Case Study

Chord
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Chord & consistent hashing

• A key is hashed to an m-bit value: 0 … (2m-1)
• A logical ring is constructed for the values  0 ... (2m-1)

• Nodes are placed on the ring at hash(IP address)

0 1
2

3

4

5

6
7

8
9

10

11

12

13

14
15 Node

hash(IP address) = 3

33October 29, 2018 © 2014-2018 Paul Krzyzanowski

Key assignment

• Example: n=16; system with 4 nodes (so far)

• Key, value data is stored at a successor
– a node whose value is ≥ hash(key)
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15
Node 3 is responsible for 

keys 15, 0, 1, 2, 3

Node 8 is responsible for 

keys 4, 5, 6, 7, 8

Node 10 is responsible for 

keys 9, 10

Node 14 is responsible for 

keys 11, 12, 13, 14

34

No nodes at these empty 

positions
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Handling query requests
• Any peer can get a request (insert or query). If the hash(key) is not for its 

ranges of keys, it forwards the request to a successor.

• The process continues until the responsible node is found
– Worst case: with p nodes, traverse p-1 nodes; that’s O(N) (yuck!)
– Average case: traverse p/2 nodes (still yuck!)
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Query( hash(key)=9 )
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Let’s figure out three more things

1. Adding/removing nodes

2. Improving lookup time

3. Fault tolerance
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Adding a node

• Some keys that were assigned to a node’s successor now get 

assigned to the new node

• Data for those (key, value) pairs must be moved to the new node
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Node 3 is responsible for 

keys 15, 0, 1, 2, 3

Node 8 was responsible for 

keys 4, 5, 6, 7, 8

Now it’s responsible for keys 

7, 8

Node 10 is responsible for 

keys 9, 10

Node 14 is responsible for 

keys 11, 12, 13, 14
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New node added: ID = 6
Node 6 is responsible 

for keys 4, 5, 6
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Removing a node

• Keys are reassigned to the node’s successor

• Data for those (key, value) pairs must be moved to the successor
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Node 3 is responsible for 

keys 15, 0, 1, 2, 3

Node 8 is responsible for 

keys 7, 8

Node 10 was responsible for 

keys 9, 10

Node 14 was responsible for 

keys 11, 12, 13, 14
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Node 6 is responsible 

for keys 4, 5, 6

Node 14 is now responsible 

for keys 9, 10, 11, 12, 13, 14
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Node 10 removed

Move (key, value) 
data to node 14

Fault tolerance
• Nodes might die

– (key, value) data should be replicated
– Create R replicas, storing each one at R-1 successor nodes in the ring

• Need to know multiple successors
– A node needs to know how to find its successor’s successor (or more)

• Easy if it knows all nodes!

– When a node is back up, it needs to check with successors for updates
– Any changes need to be propagated to all replicas
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Performance
• We’re not thrilled about O(N) lookup

• Simple approach for great performance
– Have all nodes know about each other

– When a peer gets a node, it searches its table of nodes for the node 
that owns those values

– Gives us O(1) performance

– Add/remove node operations must inform everyone

– Maybe not a good solution if we have millions of peers (huge tables)

40October 29, 2018 © 2014-2018 Paul Krzyzanowski

Finger tables

• Compromise to avoid large tables at each node
– Use finger tables to place an upper bound on the table size

• Finger table = partial list of nodes, progressively more distant

• At each node, ith entry in finger table identifies node that succeeds it 
by at least 2i-1 in the circle
– finger_table[0]: immediate (1st) successor
– finger_table[1]: successor after that (2nd)
– finger_table[2]: 4th successor
– finger_table[3]: 8th successor
– …

• O(log N) nodes need to be contacted to find the node that owns a key
… not as cool as O(1) but way better than O(N)
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Improving performance even more

• Let’s revisit O(1) lookup
• Each node keeps track of all current nodes in the group

– Is that really so bad?
– We might have thousands of nodes … so what?

• Any node will now know which node holds a (key, value)
• Add or remove a node: send updates to all other nodes
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Distributed Hashing
Case Study

Amazon Dynamo
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Amazon Dynamo
• Not exposed as a web service

– Used to power parts of Amazon Web Services and internal services
– Highly available, key-value storage system

• In an infrastructure with millions of components, something is always 
failing!
– Failure is the normal case

• A lot of services within Amazon only need primary-key access to data
– Best seller lists, shopping carts, preferences, session management, sales 

rank, product catalog
– No need for complex querying or management offered by an RDBMS

• Full relational database is overkill: limits scale and availability
• Still not efficient to scale or load balance RDBMS on a large scale
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Core Assumptions & Design Decisions

• Two operations: get(key) and put(key, data)
– Binary objects (data) identified by a unique key
– Objects tend to be small (< 1MB)

• ACID gives poor availability
– Use weaker consistency (C) for higher availability.

• Apps should be able to configure Dynamo for desired latency & 
throughput
– Balance performance, cost, availability, durability guarantees.

• At least 99.9% of read/write operations must be performed within a 
few hundred milliseconds:
– Avoid routing requests through multiple nodes

• Dynamo can be thought of as a zero-hop DHT
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Core Assumptions & Design Decisions
• Incremental scalability

– System should be able to grow by adding a storage host (node) at a time

• Symmetry
– Every node has the same set of responsibilities

• Decentralization
– Favor decentralized techniques over central coordinators

• Heterogeneity (mix of slow and fast systems)
– Workload partitioning should be proportional to capabilities of servers
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Consistency & Availability

• Strong consistency & high availability cannot be achieved 

simultaneously

• Optimistic replication techniques – eventually consistent model

– propagate changes to replicas in the background

– can lead to conflicting changes that have to be detected & resolved

• When do you resolve conflicts?

– During writes: traditional approach – reject write if cannot reach all (or 
majority) of replicas – but don't deal with conflicts

– Resolve conflicts during reads: Dynamo approach
• Design for an "always writable" data store - highly available

• read/write operations can continue even during network partitions

• Rejecting customer updates won't be a good experience

– A customer should always be able to add or remove items in a shopping cart

47

Consistency & Availability

• Who resolves conflicts?
– Choices: the data store system or the application?

• Data store 
– Application-unaware, so choices limited
– Simple policy, such as "last write wins”

• Application
– App is aware of the meaning of the data
– Can do application-aware conflict resolution
– E.g., merge shopping cart versions to get a unified shopping cart.

• Fall back on "last write wins" if app doesn't want to bother

48

Reads & Writes

Two operations:
• get(key) returns

1. object or list of objects with conflicting versions
2. context (resultant version per object)

• put(key, context, value)
– stores replicas
– context: ignored by the application but includes version of object
– key is hashed with MD5 to create a 128-bit identifier that is used to 

determine the storage nodes that serve the key
hash(key) identifies node
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Partitioning the data
• Break up database into chunks distributed over all nodes

– Key to scalability

• Relies on consistent hashing
– K/n keys need to be remapped, K = # keys, n = # slots

• Logical ring of nodes: just like Chord
– Each node assigned a random value in the hash space: position in ring
– Responsible for all hash values between its value and predecessor’s value
– Hash(key); then walk ring clockwise to find first node with position>hash
– Adding/removing nodes affects only immediate neighbors
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Partitioning: virtual nodes

• A node is assigned to multiple points in the ring

• Each point is a “virtual node”
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Dynamo virtual nodes

• A physical node holds contents of multiple virtual nodes

• In this example: 2 physical nodes, 5 virtual nodes
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7

8
9

10

11

12

13

14
15 Node 3: keys 2, 3

Node 8: keys 4, 5, 6, 7, 8

Node 10: keys 9, 10

Node 14: keys 11, 12, 13, 14

Node A

Node B

Node 1: keys 15, 0, 1
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Partitioning: virtual nodes

Advantage: balanced load distribution

– If a node becomes unavailable, load is evenly dispersed among 
available nodes

– If a node is added, it accepts an equivalent amount of load from 
other available nodes

– # of virtual nodes per system can be based on the capacity of that 
node
• Makes it easy to support changing technology and addition of new, 

faster systems
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Replication

• Data replicated on N hosts (N is configurable)
– Key is assigned a coordinator node (via hashing) = main node
– Coordinator is in charge of replication

• Coordinator replicates keys at the N-1 clockwise 
successor nodes in the ring
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Dynamo Replication

Coordinator replicates keys at the N-1 clockwise successor 
nodes in the ring
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Node 8 holds replicas for
Nodes 10 and 14

Node 10 holds replicas for 
Node 14 and 1

Node 14 holds replicas for 
Nodes 1 and 3

Example: N=3
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Versioning

• Not all updates may arrive at all replicas
– Clients may modify or read stale data

• Application-based reconciliation
– Each modification of data is treated as a new version

• Vector clocks are used for versioning
– Capture causality between different versions of the same object
– Vector clock is a set of (node, counter) pairs
– Returned as a context from a get() operation

56October 29, 2018 © 2014-2018 Paul Krzyzanowski

Availability
• Configurable values

– R: minimum # of nodes that must participate in a successful read operation
– W: minimum # of nodes that must participate in a successful write 

operation

• Metadata hints to remember original destination
– If a node was unreachable, the replica is sent to another node in the ring
– Metadata sent with the data states the original desired destination
– Periodically, a node checks if the originally targeted node is alive

• if so, it will transfer the object and may delete it locally to keep # of replicas in the 
system consistent

• Data center failure
– System must handle the failure of a data center
– Each object is replicated across multiple data centers
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Storage Nodes
Each node has three components

1. Request coordination
– Coordinator executes read/write requests on behalf of requesting clients
– State machine contains all logic for identifying nodes responsible for a 

key, sending requests, waiting for responses, retries, processing retries, 
packaging response

– Each state machine instance handles one request

2. Membership and failure detection

3. Local persistent storage
– Different storage engines may be used depending on application needs

• Berkeley Database (BDB) Transactional Data Store (most popular)
• BDB Java Edition
• MySQL (for large objects)
• In-memory buffer with persistent backing store 
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Amazon S3 (Simple Storage Service)
Commercial service that implements many of Dynamo’s features
• Storage via web services interfaces (REST, SOAP, BitTorrent)

– Stores more than 449 billion objects
– 99.9% uptime guarantee (43 minutes downtime per month)
– Proprietary design
– Stores arbitrary objects up to 5 TB in size

• Objects organized into buckets and within a bucket identified by a unique 
user-assigned key

• Buckets & objects can be created, listed, and retrieved via REST or SOAP
– http://s3.amazonaws/bucket/key

• objects can be downloaded via HTTP GET or BitTorrent protocol
– S3 acts as a seed host and any BitTorrent client can retrieve the file
– reduces bandwidth costs

• S3 can also host static websites
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The end
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