
Distributed Systems

15. Distributed File Systems

Paul Krzyzanowski

Rutgers University

Fall 2018

1October 29, 2018 © 2014-2018 Paul Krzyzanowski

Google Chubby
(≈ Apache Zookeeper)

2October 29, 2018 © 2014-2018 Paul Krzyzanowski

Chubby

Distributed lock service + simple fault-tolerant file system

• Interfaces
– File access
– Event notification
– File locking

• Chubby is used to:
– Manage coarse-grained, long-term locks (hours or days, not < sec)

• get/release/check lock – identified with a name
– Store small amounts of data associated with a name

• E.g., system configuration info, identification of primary coordinators
– Elect masters

Design priority: availability rather than performance

3October 29, 2018 © 2014-2018 Paul Krzyzanowski

Chubby Deployment

• Client library + a Chubby cell (5 replica servers)

4

Chubby

Library
Chubby

Chubby

Chubby

Chubby

Chubby

Elected master

Chubby Cell

• Memory cache

• Persistent database

• Paxos

(consensus protocol)

Chubby cell

October 29, 2018 © 2014-2018 Paul Krzyzanowski

Client

app

Chubby

Library

Client

app

Chubby

Library

Client

app

Chubby Master

• Chubby has at most one master
– All requests from the client go to the master

• All other nodes (replicas) must agree on who the master is
– Paxos consensus protocol used to elect a master
– Master gets a lease time

• Re-run master selection after lease time expires to extend the lease
…or if the master fails

– When a Chubby node receives a proposal for a new master
It will accept it only if the old master’s lease expired

October 29, 2018 5© 2014-2018 Paul Krzyzanowski

Simple User-level API for Chubby

• User-level RPC interface
– Not implemented under VFS
– Programs must access Chubby via an API

• Look up Chubby nodes via DNS
• Ask any Chubby node for the master node

• File system interface (names, content, and locks)

October 29, 2018 © 2014-2018 Paul Krzyzanowski 6

Chubby: File System Interface

• /ls/cell/rest/of/name
– /ls: lock service (common to all Chubby names)
– cell: resolved to a set of servers in a Chubby cell via DNS lookup
– /rest/of/name: interpreted within the cell

• Each file has
– Name
– Data
– Access control list
– Lock
– No modification, access times
– No seek or partial reads/writes; no symbolic links; no moves

7October 29, 2018

naming looks
sort of like AFS

© 2014-2018 Paul Krzyzanowski

Chubby: API

October 29, 2018 © 2014-2018 Paul Krzyzanowski 8

open() Set mode: read, write & lock, change ACL,
event list, lock-delay, create

close()

GetContentsAndStat() Read file contents & metadata

SetContents(), SetACL() Write file contents or ACL

Delete()

Acquire(), TryAcquire(), Release() Lock operations

GetSequencer() Sequence # for a lock

SetSequencer() Associate a sequencer with a file handle

CheckSequencer() Check if sequencer is valid

Chubby: Locks

• Every file & directory can act as a reader-writer lock
– Either one client can hold an exclusive (writer) lock
– Or multiple clients can hold reader locks

• Locks are advisory

• If a client releases a lock, the lock is immediately available

• If a client fails, the lock will be unavailable for a
lock-delay period (typically 1 minute)

9October 29, 2018 © 2014-2018 Paul Krzyzanowski

Using Locks for Leader Election

• Using Chubby locks makes leader election easy
– No need for user servers to participate in a consensus protocol

… the programmer doesn't need to figure out Paxos (or Raft)
– Chubby provides the fault tolerance
– Participant tries to acquire a lock

• If it gets it, then it’s the master for whatever service it's providing!

• Example: electing a master & using it to write to a file server
– Participant gets a lock, becomes master (for its service, not Chubby)

• Gets a lock sequence count
– In each RPC to a server, send the sequence count to the server
– During request processing, a server will reject old (delayed) packets
if (sequence_count < current_sequence_count)

reject request /* it must be from a delayed packet */

October 29, 2018 10© 2014-2018 Paul Krzyzanowski

Events

Clients may subscribe to events:

– File content modifications

– Child node added/removed/modified

– Chubby master failed over

– File handle & its lock became invalid

– Lock acquired

– Conflicting lock request from another client

11October 29, 2018 © 2014-2018 Paul Krzyzanowski

Chubby client caching & master replication

• At the client
– Data cached in memory by chubby clients

• Cache is maintained by a Chubby lease, which can be invalidated

– All clients write through to the Chubby master

• At the master
– Writes are propagated via Paxos consensus to all Chubby replicas

• Data updated in total order – replicas remain synchronized
• The master replies to a client after the writes reach a majority of replicas

– Cache invalidations
• Master keeps a list of what each client may be caching
• Invalidations sent by master and are acknowledged by client
• File is then cacheable again

– Chubby database is backed up to GFS every few hours

12October 29, 2018 © 2014-2018 Paul Krzyzanowski

Parallel File Systems

13October 29, 2018 © 2014-2018 Paul Krzyzanowski

Client-server file systems

• Central servers
– Point of congestion, single point of failure

• Alleviate somewhat with replication and client caching
– E.g., Coda, oplocks
– Limited replication can lead to congestion
– Separate set of machines to administer

• File data is still centralized
– A file server stores all data from a file – not split across servers
– Even if replication is in place,

a client downloads all data for a file from one server

October 29, 2018 14© 2014-2018 Paul Krzyzanowski

Google File System (GFS)
(≈ Apache Hadoop Distributed File System)

15October 29, 2018 © 2014-2018 Paul Krzyzanowski

GFS Goals

• Scalable distributed file system

• Designed for large data-intensive applications

• Fault-tolerant; runs on commodity hardware

• Delivers high performance to a large number of clients

16October 29, 2018 © 2014-2018 Paul Krzyzanowski

Design Assumptions

• Assumptions for conventional file systems don’t work
– E.g., “most files are small”, “lots have short lifetimes”

• Component failures are the norm, not an exception

– File system = thousands of storage machines

– Some % not working at any given time

• Files are huge. Multi-TB files are the norm

– It doesn’t make sense to work with billions of nKB-sized files

– I/O operations and block size choices are also affected

17October 29, 2018 © 2014-2018 Paul Krzyzanowski

Design Assumptions

• File access:
– Most files are appended, not overwritten

• Random writes within a file are almost never done
• Once created, files are mostly read; often sequentially

– Workload is mostly:
• Reads: large streaming reads, small random reads – these dominate
• Large appends
• Hundreds of processes may append to a file concurrently

• FS will store a modest number of files for its scale
– approx. a few million

• Designing the FS API with the design of apps benefits the
system

• Apps can handle a relaxed consistency model

18October 29, 2018 © 2014-2018 Paul Krzyzanowski

Basic Design Idea

• "Normal" file systems
– Store data & metadata on the same storage device
– Example:

• Linux directories are just files that contain lists of names & inodes
• inodes are data structures placed in well-defined areas of the disk that

contain information about the file
• Lists of block numbers containing file data are allocated from the same set

of data blocks used for file data

• Parallel file systems: separate data and metadata
– Metadata = information about the file

• Includes name, access permissions, timestamps, size, location of data
blocks

– Data = actual file contents

October 29, 2018 © 2014-2018 Paul Krzyzanowski 19

Basic Design Idea

• Use separate servers to store metadata
– Metadata includes lists of (server, block_number) sets that hold file

data
– We need more bandwidth for data access than metadata access

• Metadata is small; file data can be huge

• Use large logical blocks
– Most "normal" file systems are optimized for small files
– A block size is often 4KB
– Expect huge files, so use huge blocks

• List of blocks that makes up a file becomes easier to manage

• Replicate data
– Expect some servers to be down
– Store data on multiple servers

October 29, 2018 © 2014-2018 Paul Krzyzanowski 20

File System Interface

• GFS does not have a standard OS-level API
– No POSIX API
– No kernel/VFS implementation
– User-level API for accessing files
– GFS servers are implemented in user space using native Linux FS

• Files organized hierarchically in directories

• Operations
– Basic operations

• Create, delete, open, close, read, write
– Additional operations

• Snapshot: create a copy of a file or directory tree at low cost
• Append: allow multiple clients to append atomically without locking

21October 29, 2018 © 2014-2018 Paul Krzyzanowski

GFS Master & Chunkservers
GFS cluster
– Multiple chunkservers

• Data storage: fixed-size chunks
• Chunks replicated on several systems

– One master
• Stores file system metadata (names, attributes)
• Maps files to chunks

master

chunkserver

chunkserver

chunkserverchunkserver

chunkserver chunkserver

22

Thousands of
chunkservers

October 29, 2018 © 2014-2018 Paul Krzyzanowski

GFS Master & Chunkservers

GFS cluster

master

chunkserver

chunkserver

chunkserverchunkserver

chunkserver chunkserver

23

metadata data

“directories & inodes” data blocks

October 29, 2018 © 2014-2018 Paul Krzyzanowski

file A file

is made of 64 MB chunks

that are replicated
for fault tolerance

Chunks live on
chunkservers

chunkserver

Checkpoint
image Operation log

In-memory FS metadata

master
The master manages the file
system namespace:
names and name→{chunk list}

chunkserver chunkserver chunkserver

GFS Files

24October 29, 2018 © 2014-2018 Paul Krzyzanowski

Core Part of Google Cluster Environment

• Google Cluster Environment
– Core services: GFS + cluster scheduling system
– Typically 100s to 1000s of active jobs
– 200+ clusters, many with 1000s of machines
– Pools of 1000s of clients
– 4+ PB filesystems, 40 GB/s read/write loads

Commodity HW

Linux

Chunk
Server

Scheduling
Slave

Job
1

Job
2

Job
n

Machine 1

Commodity HW

Linux

Chunk
Server

Scheduling
Slave

Job
1

Job
2

Job
n

Machine n

Scheduling
Master

GFS
Master

Chubby
Lock Service

File system
master

Job
scheduler

Lease (lock)
manager for
mutex

25

Bring the
computation close to

the data

October 29, 2018 © 2014-2018 Paul Krzyzanowski

Chunks and Chunkservers

• Chunk size = 64 MB (default)
– Chunkserver stores a 32-bit checksum with each chunk

• In memory & logged to disk: allows it to detect data corruption

• Chunk Handle: identifies a chunk
– Globally unique 64-bit number
– Assigned by the master when the chunk is created

• Chunkservers store chunks on local disks as Linux files

• Each chunk is replicated on multiple chunkservers
– Three replicas (different levels can be specified)
– Popular files may need more replicas to avoid hotspots

26October 29, 2018 © 2014-2018 Paul Krzyzanowski

Master
• Maintains all file system metadata

– Namespace
– Access control info
– Filename to chunks mappings
– Current locations of chunks

• Manages
– Chunk leases (locks)
– Garbage collection (freeing unused chunks)
– Chunk migration (copying/moving chunks)

• Master replicates its data for fault tolerance

• Periodically communicates with all chunkservers
– Via heartbeat messages
– To get state and send commands

27October 29, 2018 © 2014-2018 Paul Krzyzanowski

Client Interaction Model

• GFS client code linked into each app

– No OS-level API – you have to use a library

– Interacts with master for metadata-related operations

– Interacts directly with chunkservers for file data

• All reads & writes go directly to chunkservers

• Master is not a point of congestion

• Neither clients nor chunkservers cache data

– Except for the caching by the OS system buffer cache

– Clients cache metadata

• E.g., location of a file’s chunks

28October 29, 2018 © 2014-2018 Paul Krzyzanowski

One master = simplified design
• All metadata stored in master’s memory

– Super-fast access

• Namespaces and name-to-chunk_list maps
– Stored in memory
– Also persist in an operation log on the disk

• Replicated onto remote machines for backup

• Operation log
– similar to a journal
– All operations are logged
– Periodic checkpoints (stored in a B-tree) to avoid playing back entire log

• Master does not store chunk locations persistently
– This is queried from all the chunkservers: avoids consistency problems

29October 29, 2018 © 2014-2018 Paul Krzyzanowski

Why Large Chunks?
• Default chunk size = 64MB

(compare to Linux ext4 block sizes: typically 4 KB and up to 1 MB)

• Reduces need for frequent communication with master to get chunk
location info

• Clients can easily cache info to refer to all data of large files
– Cached data has timeouts to reduce possibility of reading stale data

• Large chunk makes it feasible to keep a TCP connection open to a
chunkserver for an extended time

• Master stores <64 bytes of metadata for each 64MB chunk

30October 29, 2018 © 2014-2018 Paul Krzyzanowski

Reading Files

1. Contact the master

2. Get file’s metadata: list chunk handles

3. Get the location of each of the chunk handles
– Multiple replicated chunkservers per chunk

4. Contact any available chunkserver for chunk data

31October 29, 2018 © 2014-2018 Paul Krzyzanowski

Writing to files

• Less frequent than reading

• Master grants a chunk lease to one of the replicas
– This replica will be the primary replica chunkserver
– Primary can request lease extensions, if needed
– Master increases the chunk version number and informs replicas

32October 29, 2018 © 2014-2018 Paul Krzyzanowski

Writing to files: two phases

Phase 1: Send data

Deliver data but don’t write to the file
– A client is given a list of replicas

• Identifying the primary and secondaries

– Client writes to the closest replica chunkserver that has not received the data

• Replica forwards the data to another replica chunkserver

• That chunkserver forwards to another replica chunkserver

– Chunkservers store this data in a cache

Goal: Maximixe bandwidth via pipelining
Minimize latency by forwarding data as soon as it is received

33

client
chunkserver

1

chunkserver

2

chunkserver

3

October 29, 2018 © 2014-2017 Paul Krzyzanowski

Writing to files: two phases

Phase 2: Write data
Add it to the file (commit)

– Client waits for replicas to acknowledge receiving the data
– Send a write request to the primary, identifying the data that was sent
– The primary is responsible for serialization of writes

• Assigns consecutive serial numbers to all writes that it received
• Applies writes in serial-number order and forwards write requests in order

to secondaries
– Once all acknowledgements have been received, the primary

acknowledges the client

34

client primary
chunkserver

chunkserver
2

chunkserver
3

October 29, 2018 © 2014-2018 Paul Krzyzanowski

Writing to files

Data Flow (phase 1) is different from Control Flow (phase 2)

• Data Flow (upload): :
– Client to chunkserver to chunkserver to chunkserver…

– Order does not matter

• Control Flow (write):
– Client to primary; primary to all secondaries

– Locking used; Order maintained

• Chunk version numbers are used to detect if any replica
has stale data (was not updated because it was down)

35October 29, 2018 © 2014-2018 Paul Krzyzanowski

Namespace

• No per-directory data structure like most file systems
– E.g., directory file contains names of all files in the directory

• No aliases (hard or symbolic links)

• Namespace is a single lookup table
– Maps pathnames to metadata

36October 29, 2018 © 2014-2018 Paul Krzyzanowski

HDFS: Hadoop Distributed File System
• Primary storage system for Hadoop applications

• Hadoop
– Software library – framework that allows for the distributed processing of large data

sets across clusters of computers

• Hadoop includes:
– MapReduce™: software framework for distributed processing of large data sets on compute clusters.

– Avro™: A data serialization system.

– Cassandra™: A scalable multi-master database with no single points of failure.

– Chukwa™: A data collection system for managing large distributed systems.

– HBase™: A scalable, distributed database that supports structured data storage for large tables.

– Hive™: A data warehouse infrastructure that provides data summarization and ad hoc querying.

– Mahout™: A Scalable machine learning and data mining library.

– Pig™: A high-level data-flow language and execution framework for parallel computation.

– ZooKeeper™: A high-performance coordination service for distributed applications.

37October 29, 2018 © 2014-2018 Paul Krzyzanowski

HDFS Design Goals & Assumptions

• HDFS is an open source (Apache) implementation
inspired by GFS design

• Similar goals and same basic design as GFS
– Run on commodity hardware
– Highly fault tolerant
– High throughput – Designed for large data sets
– OK to relax some POSIX requirements
– Large scale deployments

• Instance of HDFS may comprise 1000s of servers
• Each server stores part of the file system’s data

• But
– No support for concurrent appends

38October 29, 2018 © 2014-2018 Paul Krzyzanowski

HDFS Design Goals & Assumptions

• Write-once, read-many file access model

• A file’s contents will not change
– Simplifies data coherency
– Suitable for web crawlers and MapReduce applications

39October 29, 2018 © 2014-2018 Paul Krzyzanowski

HDFS Architecture

• Written in Java

• Master/Slave architecture

• Single NameNode
– Master server responsible for the namespace & access control

• Multiple DataNodes
– Responsible for managing storage attached to its node

• A file is split into one or more blocks
– Typical block size = 128 MB (vs. 64 MB for GFS)
– Blocks are stored in a set of DataNodes

40October 29, 2018 © 2014-2018 Paul Krzyzanowski

file A file

is made of 64 MB chunks

that are replicated
for fault tolerance

Chunks live on
chunkservers

chunkserver

Checkpoint
image

Operation log

In-memory FS metadata

master
The master manages the
file system namespace

chunkserver chunkserver chunkserver

GFS

41October 29, 2018 © 2014-2018 Paul Krzyzanowski

file A file

is made of 128 MB blocks

that are replicated
for fault tolerance

Blocks live on
DataNodes

DataNode

FsImage EditLog

In-memory FS metadata

NameNode
The master manages the
file system namespace

DataNode DataNode DataNode

HDFS: same stuff … different names

42October 29, 2018 © 2014-2018 Paul Krzyzanowski

NameNode (= GFS master)

• Executes metadata operations

– open, close, rename
– Maps file blocks to DataNodes

– Maintains HDFS namespace

• Transaction log (EditLog) records every change that occurs to file

system metadata

– Entire file system namespace + file-block mappings is stored in memory

– … and stored in a file (FsImage) for persistence

• NameNode receives a periodic Heartbeat and Blockreport from each

DataNode

– Heartbeat = “I am alive” message

– Blockreport = list of all blocks on a datanode

• Keep track of which DataNodes own which blocks & replication count

43October 29, 2018 © 2014-2018 Paul Krzyzanowski

DataNode (= GFS chunkserver)

• Responsible for serving read/write requests

• Blocks are replicated for fault tolerance
– App can specify # replicas at creation time
– Can be changed later

• Blocks are stored in the local file system at the DataNode

44October 29, 2018 © 2014-2018 Paul Krzyzanowski

Rack-Aware Reads & Replica Selection

• Client sends request to NameNode
– Receives list of blocks and replica DataNodes per block

• Client tries to read from the closest replica
– Prefer same rack
– Else same data center
– Location awareness is configured by the admin

45October 29, 2018 © 2014-2018 Paul Krzyzanowski

Writes
• Client caches file data into a temp file

• When temp file ≥ one HDFS block size
– Client contacts NameNode
– NameNode inserts file name into file system hierarchy & allocates a data block
– Responds to client with the destination data block
– Client writes to the block at the corresponding DataNode

• When a file is closed, remaining data is transferred to a DataNode
– NameNode is informed that the file is closed
– NameNode commits file creation operation into a persistent store (log)

• Data writes are chained: pipelined
– Client writes to the first (closest) DataNode
– That DataNode writes the data stream to the second DataNode
– And so on…

46October 29, 2018 © 2014-2018 Paul Krzyzanowski

Internet-based file sync & sharing:
Dropbox

October 29, 2018 © 2014-2018 Paul Krzyzanowski 47

File synchronization

• Client runs on desktop

• Uploads any changes made within a dropbox folder

• Huge scale

– 100+ million users syncing 1 billion files per day

• Design

– Small client that doesn’t take a lot of resources

– Expect possibility of low bandwidth to user

– Scalable back-end architecture

– 99%+ of code written in Python

⇒server software migrated to Go in 2013

October 29, 2018 © 2014-2018 Paul Krzyzanowski 48

What’s different about dropbox?

• Most web-based apps have high read to write ratios
– E.g., twitter, facebook, reddit, … 100:1, 1000:1, or higher

• But with Dropbox…
– Everyone’s computer has a complete copy of their Dropbox
– Traffic happens only when changes occur
– File upload : file download ratio roughly 1:1

• Huge number of uploads compared to traditional services

• Must abide by most ACID requirements … sort of
– Atomic: don’t share partially-modified files
– Consistent:

• Operations have to be in order and reliable
• Cannot delete a file in a shared folder but have others see

– Durable: Files cannot disappear
– (OK to punt on “Isolated”)

October 29, 2018 © 2014-2018 Paul Krzyzanowski 49

Dropbox: architecture evolution: version 1

– One server: web server, app server, mySQL database, sync server

October 29, 2018 © 2014-2018 Paul Krzyzanowski 50

Server

Clients
Clients

Clients
Clients

See http://youtu.be/PE4gwstWhmc

mid 2007
0 users

Dropbox: architecture evolution: version 2
– Server ran out of disk space:

moved data to Amazon S3 service (key-value store)
– Servers became overloaded: moved mySQL DB to another machine
– Clients periodically polled server for changes

October 29, 2018 © 2014-2018 Paul Krzyzanowski 51

Server

Clients
Clients

Clients
Clients

See http://youtu.be/PE4gwstWhmc

database Amazon S3

late 2007
~0 users

• Files broken into 4 MB chunks
• Hashes stored per file
• Deduplication:

• Store only one copy among
multiple clients

• Metadata:
• Information about files
• Name, attributes, chunks

Dropbox: architecture evolution: version 3
– Move from polling to notifications: add notification server
– Split web server into two:

• Amazon-hosted server hosts file content and accepts uploads (stored as blocks)
• Locally-hosted server manages metadata

October 29, 2018 © 2014-2018 Paul Krzyzanowski 52

Metaserver

Clients
Clients

Clients
Clients

See http://youtu.be/PE4gwstWhmc

database Amazon S3

Blockserver
Notification

server

early 2008
50k users

Dropbox: architecture evolution: version 4

– Add more metaservers and blockservers
– Blockservers do not access DB directly; they send RPCs to metaservers
– Add a memory cache (memcache) in front of the database to avoid scaling

October 29, 2018 © 2014-2018 Paul Krzyzanowski 53

Meta Server

Clients
Clients

Clients
Clients

See http://youtu.be/PE4gwstWhmc

database Amazon S3

Block Server
Notification

server

late 2008
~100k users

Block ServerBlock ServerBlock ServerMeta ServerMeta ServerMeta Server

Load Balancer

memcache

Dropbox: architecture evolution: version 5
– 10s of millions of clients – Clients have to connect before getting notifications
– Add 2-level hierarchy to notification servers: ~1 million connections/server

October 29, 2018 © 2014-2018 Paul Krzyzanowski 54

Meta Server

Clients
Clients

Clients
Clients

See http://youtu.be/PE4gwstWhmc

database Amazon S3

Block Server
Notification

server

early 2012
>50M users

Block ServerBlock ServerBlock ServerMeta ServerMeta ServerMeta Server

Load Balancer

memcache

Notification
server

Notification
server

Load BalancerLoad Balancer

memcachememcachedatabasedatabase

The End

October 29, 2018 55© 2014-2018 Paul Krzyzanowski

