
CS 417 2 November 2018

Paul Krzyzanowski 1

Distributed Systems
12. Concurrency Control

David Domingo
Paul Krzyzanowski

Rutgers University

Fall 2018

1November 2, 2018 © 2014-2018 Paul Krzyzanowski

Why do we lock access to data?

• Locking (leasing) provides mutual exclusion
– Only one process at a time can access the data (or service)

• Allows us to achieve isolation
– Other processes will not see or be able to access intermediate results
– Important for consistency

Example:
Lock(table=checking_account, row=512348)
Lock(table=savings_account, row=512348)
checking_account.total = checking_account.total - 5000
savings_account.total = savings_account.total + 5000
Release(table=savings_account, row=512348)
Release(table=checking_account, row=512348)

2November 2, 2018 © 2014-2018 Paul Krzyzanowski

Schedules
Transactions must be scheduled so that data is serially equivalent

How?
– Use mutual exclusion to ensure that only one transaction executes at a time

or…
– Allow multiple transactions to execute concurrently

• but ensure serializability
⇒ concurrency control

schedule: valid order of interleaving

3November 2, 2018 © 2014-2018 Paul Krzyzanowski

Two-Phase Locking (2PL)
• Transactions run concurrently until they compete for the same resource

– Only one will get to go … others must wait

• Grab exclusive locks on a resource
– Lock data that is used by the transaction (e.g., fields in a DB, parts of a file)
– Lock manager = mutual exclusion service

• Two-phase locking
– phase 1: growing phase: acquire locks
– phase 2: shrinking phase: release locks

• Transaction is not allowed new locks after it has released a lock
– This ensures serial ordering on resource access

November 2, 2018 © 2014-2018 Paul Krzyzanowski 4

Without 2-phase locking

5

Lock(“name”)
name=“Bob”

Release(“name”)

Lock(“age”)
age=72

Release(“age”)

Transaction 1 Transaction 2 Transaction 3

Lock(“name”)
name=“Linda”

Release(“name”)

Lock(“age”)
age=25

Release(“age”)

Read name,age
name=“Linda”
age=“72”

tim
e

tim
e

tim
e

November 2, 2018 © 2014-2018 Paul Krzyzanowski

tim
e

tim
e

tim
e

With 2-phase locking

6

Lock(“name”)
name=“Bob”

Release(“name”)

Lock(“age”)
age=72

Release(“age”)

Transaction 1 Transaction 2 Transaction 3

Lock(“name”)
name=“Linda”

Release(“name”)

Lock(“age”)
age=25

Release(“age”)

Read name,age
name=“Linda”
age=“72”

Cannot grab a lock if you already
released any locks.
Move this before release("name")

November 2, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 2 November 2018

Paul Krzyzanowski 2

With 2-phase locking

7

Lock(“name”)
Lock(“age”)

name=“Bob”
Release(“name”)

age=72
Release(“age”)

Transaction 1 Transaction 2 Transaction 3

Lock(“name”)
Lock(“age”) BLOCKED

name=“Linda”
Release(“name”)

age=25
Release(“age”)

Read name,age
BLOCKED

name=“Linda”
age=“25”

tim
e

tim
e

tim
e

November 2, 2018 © 2014-2018 Paul Krzyzanowski

unblocked

unblocked

Strong Strict Two-Phase Locking (SS2PL)

• Problem with two-phase locking
– If a transaction aborts

• Any other transactions that have accessed data from released locks
(uncommitted data) have to be aborted

• Cascading aborts
– Otherwise, serial order is violated

• Avoid this situation:
– Transaction holds all locks until it commits or aborts

• Strict two-phase locking

8November 2, 2018 © 2014-2018 Paul Krzyzanowski

Increasing concurrency: locking granularity

• Typically there will be many objects in a system
– A typical transaction will access only a few of them

(and is unlikely to clash with other transactions)

• Granularity of locking affects concurrency
– Smaller amount locked ® higher concurrency

• Example:
– Lock an entire database vs. a table vs. a record in a table vs. a a

field in a record

9November 2, 2018 © 2014-2018 Paul Krzyzanowski

Multiple readers/single writer
• Improve concurrency by supporting multiple readers

– There is no problem with multiple transactions reading data from
the same object

– But only one transaction should be able to write to an object
• and no other transactions should read that data

• Two types of locks: read locks and write locks
– Set a read lock before doing a read on an object

• A read lock prevents others from writing

– Set a write lock before doing a write on an object
• A write lock prevents others from reading or writing

– Block (wait) if transaction cannot get the lock

10November 2, 2018 © 2014-2018 Paul Krzyzanowski

Read locks are
often called
shared locks

Write locks are
often called
exclusive locks

Multiple readers/single writer

If a transaction has
• No locks for an object:

– Other transactions may obtain a read or write lock

• A read lock for an object:
– Other transactions may obtain a read lock but must wait for a write

lock

• A write lock for an object:
– Other transactions will have to wait for a read or a write lock

11November 2, 2018 © 2014-2018 Paul Krzyzanowski

Two-Version Based Concurrency Control

• A transaction can write tentative versions of objects
– Others read from the original (previously-committed) version

• Read operations wait only when another transaction is
committing the same object

• Allows for more concurrency than read-write locks
– Transactions with writes risk waiting or rejection at commit
– Transactions cannot commit if other uncompleted transactions

have read the objects and committed

12November 2, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 2 November 2018

Paul Krzyzanowski 3

Two-version locking

• Three types of locks:

1. read lock
2. write lock
3. commit lock
– Transaction cannot get a read or write lock if there is a commit lock

• When the transaction coordinator receives a request to commit

– Write locks: convert to commit locks
– Read locks: wait until the transactions that set these locks have completed

and locks are released

• Compare with read/write locks:

– read operations are delayed only while transactions are being committed

– BUT read operations of one transaction can cause a delay in the

committing of other transactions

13November 2, 2018 © 2014-2018 Paul Krzyzanowski

Problems with locking

• Locks have an overhead: maintenance, checking

• Locks can result in deadlock

• Locks may reduce concurrency
– Transactions hold the locks until the transaction commits (strong

strict two-phase locking)

• But … If data is not locked
– A transaction may see inconsistent results
– Locking solves this problem … but incurs delays

14November 2, 2018 © 2014-2018 Paul Krzyzanowski

Optimistic concurrency control

• In many applications the chance of two transactions
accessing the same object is low

• Allow transactions to proceed without obtaining locks

• Check for conflicts at commit time
– Check versions of objects against versions read at start
– If there is a conflict then abort and restart some transaction

• Phases:
– Working phase: write results to a private workspace
– Validation phase: check if there’s a conflict with other transactions
– Update phase: make tentative changes permanent

15November 2, 2018 © 2014-2018 Paul Krzyzanowski

Timestamp ordering
• Assign unique timestamp to a transaction when it begins

• Each object two timestamps associated with it:
– Read timestamp: updated when the object is read
– Write timestamp: updated when the object is written

• Each transaction has a timestamp = start of transaction

• Good ordering:
– Object’s read and write timestamps will be older than the current

transaction if it wants to write an object
– Object’s write timestamps will be older than the current transaction

if it wants to read an object

• Abort and restart transaction for improper ordering
16November 2, 2018 © 2014-2018 Paul Krzyzanowski

Multiversion Concurrency Control (MVCC)

We can use timestamp ordering AND multiple versions of
an object to achieve even greater concurrency
• When a transaction wants to modify data, it creates a new version

• Store multiple versions of each object

November 2, 2018 © 2014-2018 Paul Krzyzanowski 17

Multiversion Concurrency Control (MVCC)

• Snapshot isolation
– Each transaction sees the versions of data in the state when the

transaction started

– Data is consistent for that point in time

• Timestamps
– Similar to timestamp ordering:

• Each instance of an object has associated timestamps

– Read timestamp = when the object was last read

– Write timestamp = when the object was last modified

• Transaction timestamp = start of transaction

– Reads never block but read a version < timestamp(transaction)
– Writes cannot complete if there are active transactions with earlier read

timestamps for the object
• This means a later transaction is dependent on an earlier value of the object

• The transaction will be aborted and restarted

• Old versions of objects will have to be cleaned up periodically

November 2, 2018 © 2014-2018 Paul Krzyzanowski 18

CS 417 2 November 2018

Paul Krzyzanowski 4

Leasing versus Locking

• Common approach:
– Get a lock for exclusive access to a resource

• But locks are not fault-tolerant
– What if the process that has the lock dies?
– It’s safer to use a lock that expires instead
– Lease = lock with a time limit

• Lease time: trade-offs
– Long leases with possibility of long wait after failure
– Or short leases that need to be renewed frequently

• Danger of leases
– Possible loss of transactional integrity

19November 2, 2018 © 2014-2018 Paul Krzyzanowski

Hierarchical Leases

• For fault tolerance, leases should be granted by consensus
• But consensus protocols aren’t super-efficient

• Compromise: use a hierarchy
– Use consensus as an election algorithm to elect a coordinator
– Coordinator is granted a lease on a large set of resources

• Coarse-grained locking: large regions; long time periods
– Coordinator hands out sub-leases on those resources

• Fine-grained locking: small regions (objects); short time periods

• When the coordinator’s lease expires
– Consensus algorithm is run again

20November 2, 2018 © 2014-2018 Paul Krzyzanowski

The end

21November 2, 2018 © 2014-2018 Paul Krzyzanowski

