
CS 417 2 November 2018

Paul Krzyzanowski 1

Distributed Systems
11. Distributed Commit Protocols

Paul Krzyzanowski

Rutgers University

Fall 2018

1November 2, 2018 © 2014-2018 Paul Krzyzanowski

Atomic Transactions

Transaction
– An operation composed of a number of discrete steps.

• All the steps must be completed for the transaction to be
committed. The results are made permanent.

• Otherwise, the transaction is aborted and the state of the
system reverts to what it was before the transaction
started.
– rollback = reverting to a previous state

2November 2, 2018 © 2014-2018 Paul Krzyzanowski

Example
Buying a house:
– Make an offer
– Sign contract
– Deposit money in escrow
– Inspect the house
– Critical problems from inspection?
– Get a mortgage
– Have seller make repairs
– Commit: sign closing papers & transfer deed
– Abort: return escrow and revert to pre-purchase stat

All or nothing property

3November 2, 2018 © 2014-2018 Paul Krzyzanowski

Basic Operations

Transaction primitives:

– Begin transaction: mark the start of a transaction

– End transaction: mark the end of a transaction – no more tasks

– Commit transaction: make the results permanent

– Abort transaction: kill the transaction, restore old values

– Read/write/compute data (modify files or objects)
• But data will have to be restored if the transaction is aborted.

4November 2, 2018 © 2014-2018 Paul Krzyzanowski

Another Example

Book a flight from Newark, New Jersey to Inyokern,
California. No non-stop flights are available:

Transaction begin
1. Reserve a seat for Newark to Denver (EWR→DEN)
2. Reserve a seat for Denver to Los Angeles (DEN→LAX)
3. Reserve a seat for Denver to Inyokern (LAX→IYK)

Transaction end

If there are no seats available on the LAX→IYK leg of the
journey, the transaction is aborted and reservations for (1)
and (2) are undone.

5November 2, 2018 © 2014-2018 Paul Krzyzanowski

Properties of transactions: ACID

• Atomic
– The transaction happens as a single indivisible action. Everything

succeeds or else the entire transaction is rolled back. Others do not see
intermediate results.

• Consistent
– A transaction cannot leave the database in an inconsistent state.

E.g., total amount of money in all accounts must be the same before and
after a �transfer funds� transaction.

• Isolated (Serializable)
– Transactions cannot interfere with each other or see intermediate results

If transactions run at the same time, the final result must be the same as if
they executed in some serial order.

• Durable
– Once a transaction commits, the results are made permanent.

6November 2, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 2 November 2018

Paul Krzyzanowski 2

Distributed Transactions

Transaction that updates data on two or more systems

Challenge
Handle machine, software, & network failures while preserving
transaction integrity

10November 2, 2018 © 2014-2018 Paul Krzyzanowski

Distributed Transactions

Each computer runs a transaction manager

– Responsible for subtransactions on that system

– Performs prepare, commit, and abort calls for subtransactions

Every subtransaction must agree to commit changes
before the overall transaction can complete

11November 2, 2018 © 2014-2018 Paul Krzyzanowski

Commits Among Subtransactions = Consensus

• Remember consensus?
– Agree on a value proposed by at least one process

• BUT – here we need unanimous agreement to commit

• The coordinator proposes to commit a transaction
– All participants agree ⇒ all participants then commit
– Not all participants agree ⇒ all participants then abort

12November 2, 2018 © 2014-2018 Paul Krzyzanowski

Two-Phase Commit Protocol

13November 2, 2018 © 2014-2018 Paul Krzyzanowski

Two-Phase Commit Protocol

14

Participant

Participant

Participant

Participant

Coordinator

propose(commit)

propose(commit)

propose(commit)propose(commit)

Participant

Participant

Participant

Participant

Coordinator

yes

yes

yes

no!

November 2, 2018 © 2014-2018 Paul Krzyzanowski

Two-phase commit protocol

Goal:
Reliably agree to commit or abort a collection of sub-transactions

• All processes in the transaction will agree to commit or abort

• Consensus: all processes agree on whether or not to commit

• One transaction manager is elected as a coordinator – the rest are
participants

• Assume:
– write-ahead log in stable storage
– No system dies forever
– Systems can always communicate with each other

15November 2, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 2 November 2018

Paul Krzyzanowski 3

Transaction States

working

committed aborted

When a participant enters the prepared state, it contacts the coordinator to
start the commit protocol to commit the entire transaction

started

16

prepared
(done)

November 2, 2018 © 2014-2018 Paul Krzyzanowski

Two-Phase Commit Protocol

17

Phase 1: Voting Phase
Get commit agreement from every participant

Participant

Participant

Participant

Participant

Coordinator

commit?

commit?

commit?

commit?

November 2, 2018 © 2014-2018 Paul Krzyzanowski

Two-Phase Commit Protocol

18

Phase 1: Voting Phase
Get commit agreement from every participant

Participant

Participant

Participant

Participant

Coordinator

yes

yes

yes

yes

A single “no” response means that we will have to abort the transaction

November 2, 2018 © 2014-2018 Paul Krzyzanowski

Two-Phase Commit Protocol

19

Phase 2: Commit Phase
Send the results of the vote to every participant

Participant

Participant

Participant

Participant

Coordinator

commit

commit

commit

commit

Send abort if any participant voted “no”
November 2, 2018 © 2014-2018 Paul Krzyzanowski

Two-Phase Commit Protocol

20

Phase 2: Commit Phase
Get “I have committed” acknowledgements from every participant

Participant

Participant

Participant

Participant

Coordinator

ack

ack

ack

ack

November 2, 2018 © 2014-2018 Paul Krzyzanowski

Dealing with failure

• 2PC assumes a fail-recover model
– Any failed system will eventually recover

• A recovered system cannot change its mind
– If a node agreed to commit and then crashed, it must be willing and

able to commit upon recovery

• Each system will use a write-ahead (transaction) log
– Keep track of where it is in the protocol (and what it agreed to)
– As well as values to enable commit or abort (rollback)
– This enables fail-recover

21November 2, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 2 November 2018

Paul Krzyzanowski 4

Two-Phase Commit Protocol: Phase 1

Get distributed agreement: the coordinator asked each participant if it
will commit or abort and received replies from each coordinator.

Coordinator Participant

• Write prepare to commit to log

• Work on transaction

• Send CanCommit? message

• Wait for message from coordinator

• Wait for all participants to respond • When ready, write agree to commit
or abort to the log

1. Voting Phase

• Receive the CanCommit? message

• Send agree to commit or abort to
the the coordinator

22November 2, 2018 © 2014-2018 Paul Krzyzanowski

Two-Phase Commit Protocol: Phase 2

Tell all participants to commit or abort
Get everyone’s response that they’re done.

Coordinator Participant

• Write commit or abort to log • Wait for commit/abort message

• Send commit or abort • Receive commit or abort

• Wait for all participants to
respond

• If a commit was received, write
�commit� to the log, release all
locks, update databases.

• If an abort was received, undo all
changes

• Clean up all state. Done!

• Send done message

2. Commit Phase

23November 2, 2018 © 2014-2018 Paul Krzyzanowski

Consensus
• Validity property

– Aborts in every case except when every process agrees to commit
– The final value (commit or not) has been voted on by at least one

process

• Uniform Agreement property
– Every process decides on the value proposed by the coordinator if

and only if they are instructed to do so by the coordinator in phase 2

• Integrity property
– Every process proposes only a single value (commit or abort) and

does not change its mind.

• Termination property
– Every process is guaranteed to make progress and eventually return

a vote to the coordinator.

November 2, 2018 © 2014-2018 Paul Krzyzanowski 24

Dealing with failure
Failure during Phase 1 (voting)

Coordinator dies
Some participants may have responded; others have no clue
⇒Coordinator restarts voting: checks log; sees that voting was in progress

Participant dies
The participant may have died before or after sending its vote to the coordinator
⇒ If the coordinator received the vote, it waits for other votes and go to phase 2
⇒Otherwise: wait for the participant to recover and respond (keep querying it)

25November 2, 2018 © 2014-2018 Paul Krzyzanowski

Dealing with failure

Failure during Phase 2 (commit/abort)

Coordinator dies

Some participants may have been given commit/abort instructions

⇒Coordinator restarts; checks log; informs all participants of chosen action

Participant dies

The participant may have died before or after getting the commit/abort request

⇒Coordinator keeps trying to contact the participant with the request

⇒ Participant recovers; checks log; gets request from coordinator

– If it committed/aborted, acknowledge the request

– Otherwise, process the commit/abort request and send back the acknowledgement

26November 2, 2018 © 2014-2018 Paul Krzyzanowski

Adding a recovery coordinator

• Another system can take over for the coordinator
– Could be a participant that detected a timeout to the coordinator

• Recovery node needs to find the state of the protocol

– Contact ALL participants to see how they voted

– If we get voting results from all participants

• We know that Phase 1 has completed

• If all participants voted to commit ⇒ send commit request

• Otherwise send abort request

– If ANY participant states that it has not voted

• We know that Phase 1 has not completed

• ⇒Restart the protocol

• But … if any participant node also crashes, we’re stuck!

– Have to wait for recovery

27November 2, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 2 November 2018

Paul Krzyzanowski 5

What’s wrong with the 2PC protocol?

Biggest problem: it’s a blocking protocol with failure modes that require

all systems to recover eventually

– If the coordinator crashes, participants have no idea whether to

commit or abort

• A recovery coordinator helps

– If a coordinator AND a a participant crashes

• The system has no way of knowing the result of the transaction

• It might have committed for the crashed participant – hence all others
must block

The protocol cannot pessimistically abort because some
participants may have already committed

When a participant gets a commit/abort message, it does not know if
every other participant was informed of the result

28November 2, 2018 © 2014-2018 Paul Krzyzanowski

Three-Phase Commit Protocol

29November 2, 2018 © 2014-2018 Paul Krzyzanowski

Three-Phase Commit Protocol

• Same setup as the two-phase commit protocol:
– Coordinator & Participants

• Add timeouts to each phase that result in an abort

• Propagate the result of the commit/abort vote to each
participant before telling them to act on it
– This will allow us to recover the state if any participant dies

30November 2, 2018 © 2014-2018 Paul Krzyzanowski

Three-Phase Commit Protocol

Split the second phase of 2PC into two parts:
2a. “Precommit” (prepare to commit) phase
• Send Prepare message to all participants when it received a yes from all

participants in phase 1
• Participants can prepare to commit but cannot do anything that cannot be

undone
• Participants reply with an acknowledgement
• Purpose: let every participant know the state of the result of the vote so that

state can be recovered if anyone dies

2b. “Commit” phase (same as in 2PC)
• If coordinator gets ACKs for all prepare messages

– It will send a commit message to all participants

• Else it will abort – send an abort message to all participants

31November 2, 2018 © 2014-2018 Paul Krzyzanowski

Three-Phase Commit Protocol: Phase 1

Phase 1: Voting phase
– Coordinator sends CanCommit? queries to participants & gets responses
– Purpose: Find out if everyone agrees to commit

– [!] It the coordinator gets a timeout from any participant, or any NO replies are
received
• Send an abort to all participants

– [!] If a participant times out waiting for a request from the coordinator
• It aborts itself (assume coordinator crashed)

– Else continue to phase 2

32

We can abort if the participant and/or coordinator dies

November 2, 2018 © 2014-2018 Paul Krzyzanowski

Three-Phase Commit Protocol

Phase 2: Prepare to commit phase
– Send a preparemessage to all participants.

Get OK messages from all participants
• We need to hear from all before proceeding so we can be sure the state of the protocol

can be properly recovered if the coordinator dies

– Purpose: let all participants know the decision to commit
– [!] If a participant times out: assume it crashed; send abort to all participants

Phase 3: Finalize phase
– Send commitmessages to participants and get responses from all
– [!] If participant times out: contact any other participant and move to that state

(commit or abort)
– [!] If coordinator times out: that’s ok – we know what to do

33November 2, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 2 November 2018

Paul Krzyzanowski 6

3PC Recovery

If the coordinator crashes
A recovery node can query the state from any available participant

Possible states that the participant may report:

Already committed
• That means that every other participant has received a Prepare to Commit
• Some participants may have committed

⇒ Send Commit message to all participants (just in case they didn’t get it)

Not committed but received a Prepare message
• That means that all participants agreed to commit; some may have committed

• Send Prepare to Commit message to all participants (just in case they didn’t get it)
• Wait for everyone to acknowledge; then commit

Not yet received a Prepare message
• This means no participant has committed; some may have agreed
• Transaction can be aborted or the commit protocol can be restarted

34November 2, 2018 © 2014-2018 Paul Krzyzanowski

3PC Weaknesses
Main weakness of 3PC

• May have problems when the network gets partitioned

– Partition A: nodes that received Prepare message
• Recovery coordinator for A: allows commit

– Partition B: nodes that did not receive Prepare message
• Recovery coordinator for B: aborts

– Either of these actions are legitimate as a whole
• But when the network merges back, the system is inconsistent

• Not good when a crashed coordinator recovers
– It needs to find out that someone took over and stay quiet
– Otherwise it will mess up the protocol, leading to an inconsistent state

35November 2, 2018 © 2014-2018 Paul Krzyzanowski

3PC coordinator recovery problem

• Suppose

– a coordinator sent a Prepare message to all participants

– all participants acknowledged the message

– BUT the coordinator died before it got all acknowledgements

• A recovery coordinator queries a participant

– Continues with the commit: Sends Prepare, gets ACKs, sends Commit

• Around the same time…the original coordinator recovers
– Realizes it is still missing some replies from the Prepare
– Gets timeouts from some and decides to send an Abort to all participants

• Some processes may commit while others abort!

• 3PC works well when servers crash (fail-stop model)

• 3PC is not resilient against fail-recover environments

36November 2, 2018 © 2014-2018 Paul Krzyzanowski

Paxos Commit

37November 2, 2018 © 2014-2018 Paul Krzyzanowski

What about Paxos?
• Interface to Paxos

– Client proposes a value and sends it to the Paxos leader (proposer)
– Acceptors cooperate to choose a proposed value

• What does Paxos consensus offer?
– Total ordering of proposals
– Fault tolerance: proposal is accepted if a majority of acceptors accept it

• There is always enough data available to recover the state of proposals
– Is provably resilient in asynchronous networks

• Paxos-based commit is a generalization of 2PC
– Use multiple coordinators to avoid blocking if the coordinator fails
– Set if acceptors and leader (proposers) act as the coordinator
– Run a consensus algorithm on the commit/abort decision of EACH participant

38November 2, 2018 © 2014-2018 Paul Krzyzanowski

What do we want to do?

• Each participant tries to get its chosen value (”prepare” or “abort”)
accepted by the majority of acceptors

• All instances of Paxos share the same leader and same set of

acceptors

• Leader

– Chosen via election algorithm

– Coordinates the commit algorithm

– Not a single point of failure – we can elect a new one; acceptors store
state

November 2, 2018 © 2014-2018 Paul Krzyzanowski 39

CS 417 2 November 2018

Paul Krzyzanowski 7

How do we do it?
• Some participant decides to begin to commit

– Sends a message to the Leader

• Leader:
– Sends a preparemessage to each participant

• Each participant now sends a prepare or aborted message to its
instance of Paxos (same leader for all participants)
– “Prepare” or “Abort” is sent to majority of acceptors
– Result is sent to the leader

• Leader tracks all instances of Paxos
– Commit iff every participant’s instance of Paxos chooses “prepared”
– Tell each participant to commit or abort

November 2, 2018 © 2014-2018 Paul Krzyzanowski 40

Paxos for Commit Fault-tolerant Coordinator
The cast:
– One instance of Paxos per participant (N participants)
– Set of 2F+1 acceptors and a leader play the role of the coordinator

• We can withstand the failure of F acceptors
• Leader = proposer elected to be in charge

41

Participant Leaderbegin commit

Leader prepare { Participant i=1..N }

Participant i=1..N
value = {prepared | aborted) { Acceptors }

{ Acceptors } Leader

Ready to start

Tell everyone

Each instance of Paxos
proposes to commit or abort

Each instance of Paxos
tells the result to the leader

• A leader will get at least F+1 messages for each instance
• Commit iff every participant’s instance of Paxos chooses Prepared
• Paxos commit = 2PC if one acceptor

November 2, 2018 © 2014-2018 Paul Krzyzanowski

Virtual Synchrony vs. Transactions vs. Paxos

• Virtual Synchrony
– Fastest & most scalable
– State machine replication: multicast messages to the entire group
– Focuses on group membership management & reliable multicasts

• Two-Phase & Three-Phase Commit
– Most expensive – requires extensive use of stable storage
– 2PC efficient in terms of # of messages
– Designed for transactional activities
– Not suitable for high speed messaging

• Paxos
– General purpose fault-tolerant consensus algorithm
– Performance limited by its two-phase protocol
– Useful for fault-tolerant replication & elections
– Paxos commit overcomes dead coordinator problems of 2PC and 3PC

November 2, 2018 © 2014-2018 Paul Krzyzanowski 42

Scaling & Consistency

43November 2, 2018 © 2014-2018 Paul Krzyzanowski

Reliance on multiple systems affects availability

• One database with 99.9% availability
– 8 hours, 45 minutes, 35 seconds downtime per year

• If a transaction uses 2PC protocol and requires two
databases, each with a 99.9% availability:
– Total availability = (0.999*0.999) = 99.8%

– 17 hours, 31 minutes, 12 seconds downtime per year

• If a transaction requires 5 databases:
– Total availability = 99.5%

– 1 day, 19 hours, 48 minutes, 0 seconds downtime per year

44November 2, 2018 © 2014-2018 Paul Krzyzanowski

Scaling Transactions

• Transactions require locking part of the database so that
everyone sees consistent data at all times
– Good on a small scale.

• Low transaction volumes: getting multiple databases consistent is easy
– Difficult to do efficiently on a huge scale

• Add replication – processes can read any replica
– But all replicas must be locked during updates to ensure consistency

• Risks of not locking:
– Users run the risk of seeing stale data
– The “I” of ACID may be violated

• E.g., two users might try to buy the last book on Amazon

45November 2, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 2 November 2018

Paul Krzyzanowski 8

Delays hurt

• The delays to achieve consistency can hurt business

• Amazon:
– 0.1 second increase in response time costs 1% of sales

• Google:
– 0.5 second increase in latency causes traffic to drop by 20%

• Latency is due to lots of factors
– OS & software architecture, computing hardware, tight vs loose

coupling, network links, geographic distribution, …
– We’re only looking at the problems caused by the tight software

coupling due to achieving the ACID model

http://www.julianbrowne.com/article/viewer/brewers-cap-theorem

http://highscalability.com/latency-everywhere-and-it-costs-you-sales-how-crush-it

46November 2, 2018 © 2014-2018 Paul Krzyzanowski

Eric Brewer’s CAP Theorem

Three core requirements in a shared data system:

1. Atomic, Isolated Consistency
– Operations must appear totally ordered and each is isolated

2. Availability
– Every request received by a non-failed node must result in a response

3. Partition Tolerance: tolerance to network partitioning

Messages between nodes may be lost

No set of failures less than total failure is allowed to cause the system to respond
incorrectly*

CAP Theorem: when there is a network partition, you
cannot guarantee both availability & consistency

*goo.gl/7nsj1R

47November 2, 2018 © 2014-2018 Paul Krzyzanowski

Commonly (not totally accurately) stated as
you can have at most two of the three: C, A, or P

Example: Partition
Life is good

Network partition
occurs

From: http://www.julianbrowne.com/article/viewer/brewers-cap-theorem

48

A writes v1 on N1.
v1 propagates to N2.
B reads v1 on N2.

A writes v1 on N1.
v1 cannot propagate to N2.
B reads v0 on N2.

Do we want to give up
consistency or availability?

Read old value or wait?

November 2, 2018 © 2014-2018 Paul Krzyzanowski

A V0

N1

v1

B V0

N2

B V0

N2

A V1

N1

M

A V1

N1

B V1

N2

V1

1 2 3

A V0

N1

v1

B V0

N2

B V0

N2

A V1

N1

M

A V1

N1

B V1

N2

V0

1 2 3

Giving up one of {C, A, P}

• Ensure partitions never occur
– Put everything on one machine or a cluster in one rack: high availability clustering
– Use two-phase commit or three phase commit

– Scaling suffers

• Give up availability [system is consistent & can handle partitioning]
– Lock data: have services wait until data is consistent

– Classic ACID distributed databases (also 2PC)
– Response time suffers

• Give up consistency [system is available & can handle partitioning]
– Eventually consistent data
– Use expirations/leases, queued messages for updates
– Examples: DNS, web caching, Amazon Dynamo, Cassandra, CouchDB

– Often not as bad as it sounds!

49November 2, 2018 © 2014-2018 Paul Krzyzanowski

We really want partition
tolerance & high availability
for a distributed system!

Partitions will happen
• With distributed systems, we expect partitions to occur

– Maybe not full failure but high latency can act like a failure
– The CAP theorem says we have a tradeoff between availability & consistency

• We'd like availability and consistency
– We get availability via replication
– We get consistency with atomic updates

1. Lock all copies before an update
2. Propagate updates
3. Unlock

• We can choose high availability
– Allow reads before all nodes are updated (avoid locking)

• or choose consistency
– Enforce proper locking of nodes for updates

November 2, 2018 © 2014-2018 Paul Krzyzanowski 50

Eventual Consistency

• Traditional database systems want ACID

– But scalability is a problem
(lots of transactions in a distributed environment)

• Give up Consistent and Isolated
in exchange for high availability and high performance
– Get rid of locking in exchange for multiple versions

– Incremental replication

• BASE:

– Basically Available

– Soft-state

– Eventual Consistency

• Consistency model

– If no updates are made to a data item, eventually all accesses to that item
will return the last updated value

51November 2, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 2 November 2018

Paul Krzyzanowski 9

ACID vs. BASE

• Strong consistency

• Isolation

• Focus on commit

• Nested transactions

• Availability can suffer

• Pessimistic access to data
(locking)

• Weak (eventual) consistency:
stale data at times

• High availability

• Best effort approach

• Optimistic access to data

• Simpler model
(but harder for app developer)

• Faster

From Eric Brewer’s PODC Keynote, July 2000
http://www.cs.berkeley.edu/~brewer/cs262b-2004/PODC-keynote.pdf

ACID BASE

52November 2, 2018 © 2014-2018 Paul Krzyzanowski

A place for BASE

• ACID is neither dead nor useless
– Many environments require it
– It’s safer – the framework handles ACID for you

• BASE has become common for large-scale web apps where
replication & fault tolerance is crucial
– eBay, Twitter, Amazon
– Eventually consistent model not always surprising to users

• Cellphone usage data
• Banking transactions (e.g., fund transfer activity showing up on statement)
• Posting of frequent flyer miles

But … the app developer has to worry about update conflicts and
reading stale data

… and programmers often write buggy code

November 2, 2018 © 2014-2018 Paul Krzyzanowski 53

The end

54November 2, 2018 © 2014-2018 Paul Krzyzanowski

