
Distributed Systems
10. Quorum-Based Consensus: Paxos

Paul Krzyzanowski

Rutgers University

Fall 2018

1© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Consensus Goal

Allow a group of processes to agree on a result
– All processes must agree on the same value

– The value must be one that was submitted by at least one process
(the consensus algorithm cannot just make up a value)

2© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

We saw versions of this

• Mutual exclusion

– Agree on who gets a resource or who becomes a coordinator

• Election algorithms

– Agree on who is in charge

• Other uses of consensus:

– Synchronize state to manage replicas: make sure every group

member agrees on the message ordering of events

– Manage group membership

– Agree on distributed transaction commit

• General consensus problem:

– How do we get unanimous agreement on a given value?
value = sequence number of a message, key=value, operation, whatever…

3© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Achieving consensus seems easy!

4© 2014-2018 Paul Krzyzanowski

client Data store
value = "x=1"

• One request at a time
• Server that never dies

November 1, 2018

Servers might die – let's add replicas

5© 2014-2018 Paul Krzyzanowski

client Data store
value = "x=1"

• One request at a time

Data store

Data store

value = "x=1"

value = "x=1"

November 1, 2018

Reading from replicas is easy

© 2014-2018 Paul Krzyzanowski 6

Data store

Data store

Data store

Client

x=abc

x=abc

x=def

We rely on a quorum (majority) to read successfully

No quorum = failed read!

November 1, 2018

What about concurrent updates?

7© 2014-2018 Paul Krzyzanowski

Data store

value = "x=1"

• Coordinator processes requests one at a time

• But now we have a single point of failure!

• We need something safer

Data store

Data store

value = "x=1"

value =
 "x

=1"
Client 1

Client 2

coordinator

value = "x=1"

value = "x=2"

November 1, 2018

Consensus algorithm goal

Goal: agree on one result among a group of participants

Create a fault-tolerant consensus algorithm that does not block if a
majority of processes are working

– Processors may fail (some may need stable storage)
– Messages may be lost, out of order, or duplicated
– If delivered, messages are not corrupted

8

Quorum: majority (>50%) agreement is the key part: If a majority of
coins show heads, there is no way that a majority will show tails at the
same time.

If members die and others come up, there will be one member in
common with the old group that still holds the information.

Consensus requirements

• Validity
– Only proposed values may be selected

• Uniform agreement
– No two nodes may select different values

• Integrity
– A node can select only a single value

• Termination (Progress)
– Every node will eventually decide on a value

9© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Paxos (Παξος)

Consensus algorithm

10© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Paxos

Goal: agree on a single value even if multiple systems propose
different values concurrently

Common use: provide a consistent ordering of events from multiple clients
– All machines running the algorithm agree on a proposed value from a client
– The value will be associated with an event or action
– Paxos ensures that no other machine associates the value with another event

Fault-tolerant distributed consensus algorithm
– Does not block if a majority of processes are working
– The algorithm needs a majority (2P+1) of processors survive the simultaneous failure

of P processors

Paxos provides abortable consensus
– A client’s request may be rejected
– It then has to re-issue the request

11© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

A Programmer’s View

12

Consensus
algorithm

Client
Process

If your request is not accepted, you can submit it again later:

while (submit_request(R) != ACCEPTED) ;

Send results
to replicas
(total order)accepted

Submit(R)

Think of R as a key:value pair in a database where multiple clients might want to
modify the same key

November 1, 2018 © 2014-2018 Paul Krzyzanowski

Paxos players

• Client: makes a request

• Proposers:

– Get a request from a client and run the protocol to get everyone

in the cluster to agree

– Leader: elected coordinator among the proposers

(not necessary but simplifies message numbering and ensures no

contention) – we don’t need to rely on the presence of a single leader

• Acceptors:

– Multiple processes that remember the state of the protocol

– Quorum = any majority of acceptors

• Learners:
– When agreement has been reached by acceptors, a Learner

executes the request and/or sends a response back to the client

13

Th
es

e
di

ffe
re

nt
 ro

le
s

ar
e

us
ua

lly

pa
rt

 o
f t

he
 s

am
e

sy
st

em

© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Proposal numbers
• Paxos ensures a consistent ordering in a cluster of machines

– Events are ordered by sequential event IDs (N)

• Client wants to log an event: sends request to a Proposer
– E.g., value, v = “add $100 to my checking account”

• Proposer
– Increments the latest proposal number (event ID) it knows about

• ID = sequence number
– Asks all the acceptors to reserve that proposal #

• Acceptors
– A majority of acceptors have to accept the requested proposal #

14© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Proposal Numbers

• Each proposal has a unique number (created by proposer)
– Must be unique (e.g., <sequence #>.<process_id>)

• Newer proposals take precedence over older ones

• Each acceptor
– Keeps track of the largest number it has seen so far
– Lower proposal numbers get rejected

• Acceptor sends back the {number, value} of the currently accepted
proposal

• Proposer has to “play fair”:
– It will ask the acceptors to accept the {number, value}
– Either its own or the one it got from the acceptor

15© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Paxos in action
Goal: have all acceptors agree to a value v associated with a proposal

Client

Proposer

Acceptor

Acceptor

Acceptor

Quorum

Learner

Leader

Paxos nodes: one machine may serve several roles

16

Acceptor

Proposer

Proposer

Learner
Acceptor

November 1, 2018 © 2014-2018 Paul Krzyzanowski

Paxos in action: Phase 0

Client

Proposer

Acceptor

Acceptor

Acceptor

Quorum

Learner

Client sends a request to a proposer

request(v)

17© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Paxos in action: Phase 1a – PREPARE

Client

Proposer

Acceptor

Acceptor

Quorum

Learner

Proposer: creates a proposal #N (N acts like a Lamport time stamp),
where N is greater than any previous proposal number used by this proposer
Send to Quorum of Acceptors (however many you can reach – but a majority)

Acceptor

Prepare(N)

18

N = < seq# . process_ID >

© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Paxos in action: Phase 1b – PROMISE

Client

Proposer

Acceptor

Acceptor

Quorum

Learner

Acceptor:
if proposer’s ID > any previous proposal

promise to ignore all requests with IDs < N
reply with info about highest accepted proposal if there was one: { N’, value }

Acceptor

Promise(N’, [value])

Promise to ignore all
proposals < N

Promise contains the previous N

19© 2014-2018 Paul KrzyzanowskiNovember 2, 2018

Need to get Promise
messages from a majority

of acceptors

Paxos in action: Phase 2a – PROPOSE

Client
Acceptor

Acceptor

Quorum

Learner

Proposer: if proposer receives promises from the quorum (majority):
Attach a value v to the proposal (the event).
Send Propose to quorum with the chosen value

If promise was for another {N', v}, proposer MUST accept v for the highest accepted proposal

Acceptor

Promise to ignore all
proposals < N

Propose (N', v)

20

Proposer

© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Paxos in action: Phase 2b – ACCEPT

Client

Proposer

Acceptor

Quorum

Learners

Acceptor: if the promise still holds, then announce the value v
Send Accepted message to Proposer and every Learner
BUT: if a higher proposal # may have been received during this time

then send NACK to proposer so it can try again

Acceptor
Accepted

Acceptor
Accept(N, v)

21

Accept(N, v) à Need majority

© 2014-2018 Paul Krzyzanowski

Most often, there are no learners and the ”accept"
phase is just the the messages being sent to the
service

November 1, 2018

Paxos in action: Phase 2c – ACCEPT

Client

Proposer

Acceptor

Quorum

Learner: Respond to client and/or take action on the request

Acceptor

Promise to ignore all
proposals < N

Acceptor

22

Accept(N, v)

Do (N, v) Server
Server
Server

Learners

© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Paxos: A Simple Example – All Good

23© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Paxos in action: Phase 0

Client

Proposer

Acceptor

Acceptor

Acceptor

Quorum

Learner

Client sends a request to a proposer

Request(“e”)

24© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Paxos in action: Phase 1a – PREPARE

Client

Proposer

Acceptor

Acceptor

Quorum

Learner

Proposer: picks a sequence number: 5
Send to Quorum of Acceptors

AcceptorPrepare(5)

25© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Paxos in action: Phase 1b – PROMISE

Client

Proposer

Acceptor

Acceptor

Quorum

Learner

Acceptor: Suppose 5 is the highest sequence # any acceptor has seen
Each acceptor PROMISES not to accept any lower numbers

Acceptor

Promise(5)

Promise to ignore all
proposals < 5

26© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Paxos in action: Phase 2a – ACCEPT

Client

Proposer

Acceptor

Acceptor

Quorum

Learner

Proposer: Proposer receives the promise from a majority of acceptors
Proposer must accept that <seq, value>

Acceptor

Promise to ignore all
proposals < N

Propose(5,“e”)

27© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Paxos in action: Phase 2b – ANNOUNCE

Client

Proposer

Acceptor

Quorum

Learners

Acceptor: Acceptors state that they accepted the request

Acceptor

Accepted

Acceptor
Accept(5,“e”)

28

Accept(5,“e”)

Accept(5,“e”)

© 2014-2018 Paul KrzyzanowskiNovember 2, 2018

Paxos: A Simple Example –
Higher Proposal

29© 2014-2018 Paul KrzyzanowskiNovember 2, 2018

Paxos in action: Phase 0

Client

Proposer

Acceptor

Acceptor

Acceptor

Quorum

Learner

Client sends a request to a proposer

Request(“e”)

30© 2014-2018 Paul KrzyzanowskiNovember 2, 2018

Paxos in action: Phase 1a – PREPARE

Client
Acceptor

Acceptor

Quorum

Learner

Proposer: picks a sequence number: 5
Send to Quorum of Acceptors

AcceptorPrepare(5)

31

Prepare(7)

One acceptor receives a higher
offer BEFORE it gets this PREPARE
message

Proposer

© 2014-2018 Paul KrzyzanowskiNovember 2, 2018

Proposer
2

Paxos in action: Phase 1b – PROMISE

Client

Proposer

Acceptor

Acceptor

Learner

Acceptor: If an acceptor previously received a higher ID, it will not respond

Acceptor

Promise(5)

32

No response
Promise(5)

© 2014-2018 Paul KrzyzanowskiNovember 2, 2018

max_id=5

max_id=7

max_id=5

Proposer
2

Paxos in action: Phase 1a – PREPARE

Client
Acceptor

Acceptor

Learner

Proposer: The other proposer’s messages now reach the other acceptors
Send to Quorum of Acceptors

Acceptor

33

Prepare(7)Proposer

© 2014-2018 Paul KrzyzanowskiNovember 2, 2018

Proposer
2

Paxos in action: Phase 1b – PROMISE

Client

Proposer

Acceptor

Acceptor

Learner

Acceptor: Higher proposal numbers will get promises fulfilled
Proposer 2 gets a quorum of responses

Acceptor

Promise(7)

34© 2014-2018 Paul KrzyzanowskiNovember 2, 2018

max_id=5

max_id=7

max_id=5

Promise(7)

Proposer
2

Promise(7)

Paxos in action: Phase 2a – ACCEPT

Client

Proposer

Acceptor

Acceptor

Learner

Proposer: Now the first proposer sends ACCEPT messages

They get rejected because the acceptors made other promises

Acceptor

Promise to ignore all

proposals < N

Propose(5,“e”)

35© 2014-2018 Paul KrzyzanowskiNovember 2, 2018

Proposer

2

Paxos in action: Phase 2a – ACCEPT

Client

Proposer

Acceptor

Acceptor

Learner

Proposer: The second proposer’s messages are accepted – it’s the highest ID

Acceptor

Promise to ignore all

proposals < N

36© 2014-2018 Paul KrzyzanowskiNovember 2, 2018

Proposer

2

Propose(7,“f”)Propose(7,“f”)

Propose(7,“f”)

Paxos in action: Phase 2b – ANNOUNCE

Client

Proposer

Acceptor

Learners

Acceptor: Acceptors state that they accepted the request

Acceptor

Accepted

Acceptor
Accepted(7,“f”)

37

Announce(7,“f”)

Announce(7,“f”)

© 2014-2018 Paul KrzyzanowskiNovember 2, 2018

Proposer
2

Paxos: Keep trying if you need to

• A proposal N may fail because

– The acceptor may have made a new promise to ignore all proposals less

than some value M >N

– A proposer does not receive a quorum of responses: either promise
(phase 1b) or accept (phase 2b)

• Algorithm then has to be restarted with a higher proposal #

38© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Paxos summary

• Paxos allows us to ensure consistent (total) ordering over
a set of events in a group of machines
– Events = commands, actions, state updates

• Each machine will have the latest state or a previous
version of the state

• Paxos used in:
– Google Chubby lock manager / name server
– Apache Zookeeper (clone of Google Chubby)
– Cassandra lightweight transactions
– Google Spanner, Megastore
– Microsoft Autopilot cluster management service from Bing
– VMware NSX Controller
– Amazon Web Services, DynamoDB

39© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Paxos summary
To make a change to the system:

– Tell the proposer (leader) the event/command you want to add
• Note: these requests may occur concurrently
• Leader = one elected proposer. Not necessary for Paxos algorithm but an

optimization to ensure a single, increasing stream of proposal numbers. Cuts
down on rejections and retries.

– The proposer picks its next highest event ID and asks all the acceptors to
reserve that event ID
• If any acceptor sees has seen a higher event ID, it rejects the proposal & returns

that higher event ID
• The proposer will have to try again with another event ID

– When the majority of acceptors accept the proposal, accepted events
are sent to learners, which can act on them (e.g., update system state)
• Fault tolerant: need 2k+1 servers for k fault tolerance

40© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

Implementation

• Use only one proposer at a time – the leader

– Other nodes can be active backups just in case the leader dies

– No need to worry about sync of proposal # – those are local per proposer

– Acts like a fault-tolerant coordinator

• Avoids failed proposals due to higher numbers from other proposers

• Alternatively, embed proposer logic into client library

– Too many clients issuing concurrent requests can cause a large # of retries

• Learners rarely needed

– Acceptors are often running on the system that processes the request

(e.g., data store, log, …)

– Just send an acknowledgement directly to the client.

© 2014-2018 Paul Krzyzanowski 41November 1, 2018

The End

42© 2014-2018 Paul KrzyzanowskiNovember 1, 2018

