
Distributed Systems
09. Consensus: Mutual Exclusion & Election Algorithms

Paul Krzyzanowski

Rutgers University

Fall 2018

1October 8, 2018 © 2014-2018 Paul Krzyzanowski

Process Synchronization

Techniques to coordinate execution among processes
– One process may have to wait for another
– Shared resource (e.g. critical section) may require exclusive access

Mutual exclusion
– Examples

• Update a fields in database tables
• Modify a file
• Modify file contents that are replicated on multiple servers

– Easy to handle if the entire request is atomic
• Contained in a single message; server can manage mutual exclusion

– Needs to be coordinated if the request comprises multiple messages
or spans multiple systems

2October 8, 2018 © 2014-2018 Paul Krzyzanowski

Centralized Systems

Achieve mutual exclusion via:
– Test & set in hardware
– Semaphores
– Messages (inter-process)
– Condition variables

3October 8, 2018 © 2014-2018 Paul Krzyzanowski

Distributed Mutual Exclusion

Goal:
Create an algorithm to allow a process to request and obtain
exclusive access to a resource that is available on the
network.

Required properties:
Safety: At any instant, only one process may hold the resource

Liveness: The algorithm should make progress; processes should not
wait forever for messages that will never arrive

Fairness: Each process gets a fair chance to hold the resource: bounded
wait time & in-order processing

4October 8, 2018 © 2014-2017 Paul Krzyzanowski

Assumption

Assume there is agreement on how a resource is identified
– Pass the identifier with requests
– e.g., lock(“printer”)

lock(“table:employees”),
lock(“table:employees;row:15”)

…and every process can identify itself uniquely

We’ll just use request(R) to request exclusive access to
resource R.

5October 8, 2018 © 2014-2018 Paul Krzyzanowski

Categories of algorithms

• Centralized
– A process can access a resource because a central coordinator

allowed it to do so

• Token-based
– A process can access a resource if it is holding a token permitting it

to do so

• Contention-based
– An process can access a resource via distributed agreement

6October 8, 2018 © 2014-2018 Paul Krzyzanowski

Centralized algorithm

• Mimic single processor system

• One process elected as coordinator

P

Crequest(R)

grant(R)

1. Request resource

2. Wait for response

3. Receive grant
4. access resource
5. Release resource

release(R)

7October 8, 2018 © 2014-2018 Paul Krzyzanowski

Centralized algorithm

• If another process claimed resource:
– Coordinator does not reply until release
– Maintain queue

• Service requests in FIFO order

P0

Crequest(R)

grant(R)

release(R) P1

P2

request(R)

Queue

P1

request(R)

P2

grant(R)

8October 8, 2018 © 2014-2018 Paul Krzyzanowski

Centralized algorithm

Benefits

• Fair: All requests processed in order

• Easy to implement, understand, verify

• Processes do not need to know group members – just the
coordinator

Problems

• Process cannot distinguish being blocked from a dead
coordinator – single point of failure

• Centralized server can be a bottleneck

9October 8, 2018 © 2014-2018 Paul Krzyzanowski

Token Ring algorithm

Assume known group of processes
– Some ordering can be imposed on group (unique process IDs)
– Construct logical ring in software
– Process communicates with its neighbor

P0

P1

P2

P3

P4

P5

10October 8, 2018 © 2014-2018 Paul Krzyzanowski

Token Ring algorithm

• Initialization
– Process 0 creates a token for resource R

• Token circulates around ring
– From Pi to P(i+1)mod N

• When process acquires token
– Checks to see if it needs to enter critical section
– If no, send ring to neighbor
– If yes, access resource

• Hold token until done
P0

P1

P2

P3

P4

P5

token(R)

11October 8, 2018 © 2014-2018 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R

12October 8, 2018 © 2014-2018 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5
Your turn to access
resource R

13October 8, 2018 © 2014-2018 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access
resource R

14October 8, 2018 © 2014-2018 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R

15October 8, 2018 © 2014-2018 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access
resource R

16October 8, 2018 © 2014-2018 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5Your turn to access
resource R

17October 8, 2018 © 2014-2018 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5

Your turn to access resource R

18October 8, 2018 © 2014-2018 Paul Krzyzanowski

Token Ring algorithm

P0

P1

P2

P3

P4

P5
Your turn to access
resource R

19October 8, 2018 © 2014-2018 Paul Krzyzanowski

Token Ring algorithm summary

• Only one process at a time has token

– Mutual exclusion guaranteed

• Order well-defined (but not necessarily first-come, first-served)

– Starvation cannot occur

– Lack of FCFS ordering may be undesirable sometimes

• Problems

– Token loss (e.g., process died)

• It will have to be regenerated

• Detecting loss may be a problem

(is the token lost or in just use by someone?)

– Process loss: what if you can't talk to your neighbor?

20October 8, 2018 © 2014-2018 Paul Krzyzanowski

Lamport’s Mutual Exclusion

Distributed algorithm using reliable multicast and logical clocks

• Each process maintains request queue
– Queue contains mutual exclusion requests

• Messages are sent reliably and in FIFO order
– Each message is time stamped with totally ordered Lamport

timestamps
• Ensures that each timestamp is unique
• Every node can make the same decision by comparing timestamps

• Queues are sorted by message timestamps

21October 8, 2018 © 2014-2018 Paul Krzyzanowski

Lamport’s Mutual Exclusion

Request a critical section:
– Process Pi sends request(i, Ti) to all nodes

… and places request on its own queue

– When a process Pj receives a request:
• It returns a timestamped ack
• Places the request on its request queue

Enter a critical section (accessing resource):
– Pi has received ACKs from everyone
– Pi’s request has the earliest timestamp in its queue

Release a critical section:
– Process Pi removes its request from its queue
– sends release(i, Ti) to all nodes
– Each process now checks if its request is the earliest in its queue

• If so, that process now has the critical section

Lamport time

22

Process Time stamp

P4 1021

P8 1022

P1 3944

P6 8201

P12 9638

Sample request queue
Identical at each process

October 8, 2018 © 2014-2018 Paul Krzyzanowski

Lamport’s Mutual Exclusion

• Performance
– 3(N-1) messages per critical section

– (N-1) Request msgs + (N-1) Reply msgs + (N-1) Release msgs

• N points of failure

• Not great … but demonstrates that a fully distributed

algorithm is possible

23October 8, 2018 © 2014-2018 Paul Krzyzanowski

Ricart & Agrawala algorithm
Another distributed algorithm

using reliable multicast and logical clocks

• When a process wants to enter critical section:
1. Compose message containing:

• Identifier (machine ID, process ID)
• Name of resource
• Timestamp (e.g., totally-ordered Lamport)

2. Reliably multicast request to all processes in group

3. Wait until everyone gives permission

4. Enter critical section / use resource

24October 8, 2018 © 2014-2018 Paul Krzyzanowski

Ricart & Agrawala algorithm

• When process receives request:
– If receiver not interested:

• Send OK to sender
– If receiver is in critical section

• Do not reply; add request to queue
– If receiver just sent a request as well: (potential race condition)

• Compare timestamps on received & sent messages
• Earliest wins
• If receiver is loser, send OK
• If receiver is winner, do not reply, queue it

• When done with critical section
– Send OK to all queued requests

25October 8, 2018 © 2014-2018 Paul Krzyzanowski

Ricart & Agrawala algorithm

• Performance
– 2(N-1) messages per critical section

– (N-1) Request msgs + (N-1) Reply msgs

• Not great either

– N points of failure

– A lot of messaging traffic

– Also demonstrates that a fully distributed algorithm is possible

26October 8, 2018 © 2014-2018 Paul Krzyzanowski

Lamport vs. Ricart & Agrawala

Lamport

– Everyone responds (acks) … always – no hold-back

– 3(N-1) messages

• Request – ACK – Release

– Process decides to go based on whether its request is the earliest in

its queue

Ricart & Agrawala

– If you are in the critical section (or won a tie)

• Don’t respond with an ACK until you are done with the critical section

– 2(N-1) messages

• Request – ACK

– Process decides to go if it gets ACKs from everyone

27October 8, 2018 © 2014-2018 Paul Krzyzanowski

Election algorithms

28October 8, 2018 © 2014-2018 Paul Krzyzanowski

Elections

• Purpose
– Need to pick one process to act as coordinator

• Processes have no distinguishing characteristics

• Each process has a unique ID to identify itself

29October 8, 2018 © 2014-2018 Paul Krzyzanowski

Bully algorithm

• Select process with largest ID as coordinator

• When process P detects dead coordinator:
– Send election message to all processes with higher IDs

• If nobody responds, P wins and takes over
• If any process responds, P’s job is done

– Optional: Let all nodes with lower IDs know an election is taking
place

• If process receives an election message
– Send OK message back
– Hold election (unless it is already holding one)

30October 8, 2018 © 2014-2018 Paul Krzyzanowski

Bully algorithm

• A process announces victory:
– Sends all processes a message telling them that it is the new

coordinator

• If a dead process recovers
– It holds an election to find the coordinator

31October 8, 2018 © 2014-2018 Paul Krzyzanowski

Bully algorithm

32

P0 P1 P2 P3 P4 P5

DEAD

Rule: highest # process is the leader

Suppose P5 dies

P2 detects P5 is not responding

hello?

October 8, 2018 © 2014-2018 Paul Krzyzanowski

Bully algorithm

33

P0 P1 P2 P3 P4 P5

DEAD

P2 starts an election

Contacts all higher-numbered systems

ELECTION

ELECTION

ELECTION

October 8, 2018 © 2014-2018 Paul Krzyzanowski

Bully algorithm

34

P0 P1 P2 P3 P4 P5

DEAD

Everyone who receives an ELECTION message responds

… and holds their own election, contacting higher # processes

Example: P3 receives the message from P2

Responds to P2

Sends ELECTION messages to P4 and P5

ELECTION

ELECTION

ACK

October 8, 2018 © 2014-2018 Paul Krzyzanowski

Bully algorithm

35

P0 P1 P2 P3 P4 P5

DEAD

P4 responds to P3 and P2's messages
… and holds an election

ELECTION

ELECTION

ACK

ACK

October 8, 2018 © 2014-2018 Paul Krzyzanowski

Bully algorithm

36

P0 P1 P2 P3 P4 P5

DEAD

Nobody responds to P4

After a timeout, P4 declares itself the leader

Leader = P4

Leader = P4 Leader = P4

Leader = P4

Leader = P4

October 8, 2018 © 2014-2018 Paul Krzyzanowski

Ring algorithm

• Ring arrangement of processes

• If any process detects failure of coordinator
– Construct election message with process ID and send to next

process
– If successor is down, skip over
– Repeat until a running process is located

• Upon receiving an election message
– Process forwards the message, adding its process ID to the body

37October 8, 2018 © 2014-2018 Paul Krzyzanowski

Ring algorithm

Eventually message returns to originator
– Process sees its ID on list
– Circulates (or multicasts) a coordinator message announcing

coordinator
• E.g. highest numbered process

38October 8, 2018 © 2014-2018 Paul Krzyzanowski

Ring algorithm

P5

P0

P1

P2

P3

P4

Election: {P1}

Assume P1 discovers that the coordinator, P5, is dead
P1 starts an election

DEAD

39October 8, 2018 © 2014-2018 Paul Krzyzanowski

Ring algorithm

P5

P0

P1

P2

P3

P4

Election: {P1, P2}

DEAD

40October 8, 2018 © 2014-2018 Paul Krzyzanowski

Ring algorithm

P5

P0

P1

P2

P3

P4
DEAD

Election: {P1, P2, P3}

41October 8, 2018 © 2014-2018 Paul Krzyzanowski

Ring algorithm

P5

P0

P1

P2

P3

P4
DEAD

Election: {P1, P2, P3, P4}

Fails: P5 is dead

42October 8, 2018 © 2014-2018 Paul Krzyzanowski

Ring algorithm

P5

P0

P1

P2

P3

P4
DEAD

Election: {P1, P2, P3, P4}

Skip to P0

43October 8, 2018 © 2014-2018 Paul Krzyzanowski

Ring algorithm

P5

P0

P1

P2

P3

P4
DEAD

Election: {P1, P2, P3, P4, P0}

44October 8, 2018 © 2014-2018 Paul Krzyzanowski

Ring algorithm

P5

P0

P1

P2

P3

P4

P2 receives the election message that it initiated

P2 now picks a leader (e.g., lowest or highest ID)

DEAD

Election: {P1, P2, P3, P4, P0}

Winner!This is me!

45

Because P1 sees its ID
at the head of the list, it
know that this is the
election that it started

We might have
multiple concurrent
elections. Everyone
needs to pick the
same leader. Here, we
agree to pick the
highest ID in the list.

October 8, 2018 © 2014-2018 Paul Krzyzanowski

Ring algorithm

P5

P0

P1

P2

P3

P4

P1 announces that P4 the new coordinator to the group

DEAD

P4
P4

P4

P4

46October 8, 2018 © 2014-2018 Paul Krzyzanowski

P4

Chang & Roberts Ring Algorithm

Optimize the ring
– Message always contains one process ID
– Avoid multiple circulating elections
– If a process sends a message, it marks its state as a participant

Upon receiving an election message:
If PID(message) > PID(process)

forward the message – higher ID will always win over a lower one
If PID(message) < PID(process)

replace PID in message with PID(process)
forward the new message – we have a higher ID number; use it

If PID(message) < PID(process) AND process is participant
discard the message – we're already circulating our ID and ours is higher

If PID(message) == PID(process)
the process is now the leader – message circulated: announce winner

47October 8, 2018 © 2014-2018 Paul Krzyzanowski

Network Partitions: Split Brain
• Network partitioning (segmentation)

– Split brain
– Multiple nodes may decide they’re the leader

• Dealing with partitioning
– Insist on a majority → if no majority, the system will not function
– Rely on alternate communication mechanism to validate failure

• Redundant network, shared disk, serial line, SCSI

• We will visit this problem later!
48

Router Router Router

Leader!Leader!Leader!

October 8, 2018 © 2014-2018 Paul Krzyzanowski

The End

October 8, 2018 49© 2014-2018 Paul Krzyzanowski

