
Distributed Systems
08. State Machine Replication & Virtual Synchrony

Paul Krzyzanowski

Rutgers University

Fall 2018

1October 6, 2018 © 2014-2018 Paul Krzyzanowski 



Virtual Synchrony –
State Machine Replication

2October 6, 2018 © 2014-2018 Paul Krzyzanowski 



State machine replication
• We want high scalability and high availability

– Achieve via redundancy

• High availability means replicated functioning components will take 
place of ones that stop working
– Active-passive: replicated components are standing by
– Active-active: replicated components are working

• Model system as a sequence of states
– Input to a specific state produces deterministic output and a transition to a 

new state
• “State”: replicated data or replicated computing

– To ensure correct execution & high availability
• Each process must see & process the same inputs in the same sequence
• Obtain consensus at each state transition

3October 6, 2018 © 2014-2018 Paul Krzyzanowski 



State machine replication

• Replicas = group of machines = process group
– Load balancing (queries can go to any replica)
– Fault tolerance (OK if some dies; they all do the same thing)

• Important for replicas to remain consistent 
– Need to receive the same messages [usually] in the same order

• What if one of the replicas dies?
– Then it does not get updates
– When it comes up, it will be in a state prior to the updates

• Not good – getting new updates will put it in an inconsistent state

4October 6, 2018 © 2014-2018 Paul Krzyzanowski 



Faults

• Faults may be
– Fail-silent (fail-stop)
– Byzantine (corrupted data)

• synchronous system vs. asynchronous system
– Synchronous = system responds to a message in a bounded time
– E.g., IP packet versus serial port transmission 
– We assume we have an asynchronous system

5October 6, 2018 © 2014-2018 Paul Krzyzanowski 



Agreement in faulty systems

Two army problem
– Good processors 
– Asynchronous & unreliable communication lines
– Coordinated attack
– Infinite acknowledgement problem

6October 6, 2018 © 2014-2018 Paul Krzyzanowski 



Agreement in faulty systems

• It is impossible to achieve consensus with asynchronous 
faulty processes
– There is no way to check whether a process failed or is alive but not 

communicating (or communicating quickly enough)

• We have to live with this

• We cannot reliably detect a failed process

• But we can propagate our knowledge that we think it failed
– Take it out of the group

9October 6, 2018 © 2014-2018 Paul Krzyzanowski 



Group View

• Set of processes currently in the group

• A multicast message is associated with a group view

• Every process in the group should have the same view

• View change
– When a process joins or leaves the group, the group view changes
– View change

• Multicast message announcing the joining or leaving of a process

10October 6, 2018 © 2014-2018 Paul Krzyzanowski 



Virtual Synchrony

• What if a message is being multicast during a view change?

– Two multicast messages in transit at the same time:

• view change (vc)
• message (m)

• Need to guarantee

– m is delivered to all processes in G before any process is delivered vc
– OR m is not delivered to any process in G

• Reliable multicasts with this property
are virtually synchronous

– All multicasts must take place between view changes

– A view change is a barrier

11

recall the distinction between 
receiving a message and 
delivering it to the application

October 6, 2018 © 2014-2018 Paul Krzyzanowski 



View Changes & Virtual Synchrony

12

Time

p

q

r

s

t

G={p} G={p, q} G={p, q, r, s, t} G={r, s, t}

0 10 20 30 40 50 60 70

October 6, 2018 © 2014-2018 Paul Krzyzanowski 



Virtual Synchrony: implementation example

• Isis: fault-tolerant distributed system offering virtual synchrony
– Achieves high update & membership event rates
– Hundreds of thousands of events/second on commodity hardware as of 

2009

• Virtual synchrony
– Provides distributed consistency
– Applications can create & join groups & send multicasts
– Applications will see the same events in an equivalent order
– Group members can update group state in a consistent, fault-tolerant 

manner

• Who uses it?
– Isis: Microsoft’s scalable cluster service, IBM’s DCS system, CORBA
– Similar models: Apache Zookeeper (configuration, synchronization, and 

naming service)

13October 6, 2018 © 2014-2018 Paul Krzyzanowski 



Implementation: Goals

• Message transmission is asynchronous
– Machines may receive messages in different order

• Virtual synchrony
– Preserve the illusion that events happen in the same order

• Hold back & deliver to the application in a consistent order.
– Uses TCP → reliable point-to-point message delivery
– Multicasting is implemented by sending a message to each group 

member
– No guarantee that ALL group members receive the message

• The sender may fail before transmission ends

14October 6, 2018 © 2014-2018 Paul Krzyzanowski 



Implementation: Group Management

• Group Membership Service (GMS)
– Failure detection service
– If a process p reports a process q as faulty

• GMS reports this to every process with a connection to q
• q is taken out of the process group and would need to re-join

– Imposes a consistent picture on membership

15October 6, 2018 © 2014-2018 Paul Krzyzanowski 



Implementation: State Transfer

• When a new member joins a group
– It will need to import the current state of the group
– State transfer:

• Contact an existing member to request a state transfer
• Initialize the replica to that checkpoint state
• A state transfer is treated as an instantaneous event

• Problem
– Guarantee that all messages sent to view Gi are delivered to all 

non-faulty processes in Gi before the next view change (Gi+1)

16October 6, 2018 © 2014-2018 Paul Krzyzanowski 



Implementation: Receiving all messages

• Make sure each process in Gi has received all messages that were 
sent to Gi
– A sender may have failed

→ there may be processes that will not receive a message m
– These processes should get m from somewhere else

• Let every process hold m until it knows that all members of Gi
received it

– Once all members received it, m is stable
– Only stable messages can get delivered to applications

– Select an arbitrary process in Gi and request it to send m to all other 
processes

• Delivery within the group is reliable, so this ensures that the message is stable

17October 6, 2018 © 2014-2018 Paul Krzyzanowski 



View change: Gi → Gi+1

• Some process P receives a view change message
– It detected a failure or received a request from a process wanting to 

join or leave the group
– P forwards a copy of any unstable messages to every process in 

Gi+1

– It then marks the message as stable

– P indicates it no longer has any unstable messages
– It is ready to transition to view Gi+1 as soon as other processes are 

ready
– P multicasts a flush message for Gi+1

– Waits to receive a flush message for Gi+1 from every other process
– Then switches to the new view Gi+1

18October 6, 2018 © 2014-2018 Paul Krzyzanowski 



View change: Gi → Gi+1

• Some process Q, still operating in view Gi, receives a message m
– If it has already received message m, it discards it as a duplicate
– Delivers m (using message ordering constraints as necessary)

• When Q receives a view change message, it will
– Forward any of its unstable messages to the group
– Multicast a flush message for Gi+1

– Waits to receive a flush message for Gi+1 from every other process
– Then switches to the new view Gi+1

19October 6, 2018 © 2014-2018 Paul Krzyzanowski 



View change summary

• Every process will
– Send any unstable messages to all group members
– Process received messages that are not duplicates
– Send a flush message to the group
– Receive a flush message from the entire group

20October 6, 2018 © 2014-2018 Paul Krzyzanowski 



The end

21October 6, 2018 © 2014-2018 Paul Krzyzanowski 


