Distributed Systems

07. Group Communication & Multicast

Paul Krzyzanowski
Rutgers University

Fall 2018

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

p
Modes of communication

* One-to-One
— Unicast

¢« 11
» Point-to-point

— Anycast
 1—>nearest 1 of several identical nodes
* Introduced with IPv6; used with BGP routing protocol

* One-to-many
— Multicast

* 1—>many
e group communication

— Broadcast
« 1-all

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

p
Groups

Groups allow us to deal with a
collection of processes as one abstraction

Send message to one entity
— Deliver to entire group

Groups are dynamic
— Created and destroyed

— Processes can join or leave
« May belong to 0O or more groups

Primitives
Join_group, leave group, send _to group,
query _membership (sometimes)

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

Design Issues

* Closed vs. Open
— Closed: only group members can sent messages

Peer vs. Hierarchical
— Peer: each member communicates with the entire group

— Hierarchical: go through coordinator(s)
» Root coordinator: forwards message to appropriate subgroup coordinators

Managing membership & group creation/deletion
— Distributed vs. centralized

Leaving & joining must be synchronous

Fault tolerance
— Reliable message delivery? What about missing members?

October 6, 2018 © 2014-2018 Paul Krzyzanowski 4

p
Faillure considerations

» Crash failure
— Process stops communicating

« Omission failure (typically due to network)
— Send omission: A process fails to send messages
— Receive omission: A process fails to receive messages

« Byzantine failure
— Some messages are faulty

* Partition failure

.

The same things bite us with unicast communication

— The network may get segmented, dividing the group into two or

more unreachable sub-groups Q———0 /O
—_— \:>::

October 6, 2018 © 2014-2018 Paul Krzyzanowski

J
5

.

Implementing

Group Communication

Mechanisms

October 6, 2018

© 2014-2018 Paul Krzyzanowski

p
Hardware multicast

If we have hardware support for multicast
— Group members listen on network address

send addr=m;
listen addr = my

listen addr = my

listen addr = my

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

-

Broadcast

Diffusion group: send to all clients & then filter
— Software filters incoming multicast address
— May use auxiliary address (not in the network address header) to

identify group

‘ discard id=m
‘ accept id=m
‘ accept id=m
‘ discard id=m
‘ accept id=m

broadcast(id=m)

_

‘\

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

-

Hardware multicast & broadcast

.

» Ethernet supports both multicast & broadcast

* Limited to local area networks

October 6, 2018 © 2014-2018 Paul Krzyzanowski

(

Software implementation: multiple unicasts

.

Sender knows group members

listen local addr = a,

listen local addr = aj

listen local addr = as

October 6, 2018 © 2014-2018 Paul Krzyzanowski

10

[

Software implementation: hierarchical

coordinator

Multiple unicasts via group coordinator
— Coordinator knows group members
— Coordinator iterates through group members
— May support a hierarchy of coordinators

listen local addr = a,

listen local addr = aj

listen local addr = as

October 6, 2018

© 2014-2018 Paul Krzyzanowski

11

.

Reliability of multicasts

October 6, 2018 © 2014-2018 Paul Krzyzanowski

12

-

Atomic multicast

Atomicity
Message sent to a group arrives at all group members
« If it fails to arrive at any member, no member will process it

Problems
Unreliable network
« Each message should be acknowledged
* Acknowledgements can be lost
Message sender might die

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

-

Achieving atomicity

\

* General idea
— Ensure that every recipient acknowledges receipt of the message
— Only then allow the application to process the message

— If we give up on a recipient
then no recipient can process that received message

» Easier said than done!

— What if a recipient dies after acknowledging the message?
 |s it obligated to restart?
« If it restarts, will it know to process the message?

— What if the sender (or coordinator) dies partway through the
protocol?

October 6, 2018 © 2014-2018 Paul Krzyzanowski

14

-

Achieving atomicity — example 1

Retry through network failures & system downtime

Sender & receivers maintain a persistent log

Each message has a unique ID so we can discard duplicates

Sender

— Send message to all group members

— Write message to log

— Wait for acknowledgement from each group member

— Write acknowledgement to log
— If timeout on waiting for an acknowledgement, retransmit to group member

Receiver
— Log received non-duplicate message to persistent log
— Send acknowledgement

NEVER GIVE UP!

— Assume that dead senders or receivers will be rebooted and will restart
where they left off

October 6, 2018 © 2014-2018 Paul Krzyzanowski

i Achieving atomicity — example 2

Redefine the group

* [f some members failed to receive the message:

— Remove the failed members from the group
— Then allow existing members to process the message

« But still need to account for the death of the sender

— Surviving group members may need to take over to ensure all
current group members receive the message

 This is the approach used in virtual synchrony

\

October 6, 2018 © 2014-2018 Paul Krzyzanowski

16

[Reliable multicast

« All non-faulty group members will receive the message
— Assume sender & recipients will remain alive

— Network may have glitches
* Try to retransmit undelivered messages ... but eventually give up

— It's OK if some group members don’t get the message

* Acknowledgements
— Send message to each group member
— Wait for acknowledgement from each group member
— Retransmit to non-responding members
— Subject to feedback implosion

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

17

[Optimizing Acknowledgements

» Easiest thing is to wait for an ACK before sending the next message
— But that incurs a round-trip delay

» Optimizations
— Pipelining
« Send multiple messages — receive ACKs asynchronously
» Set timeout — retransmit message for missing ACKs

— Cumulative ACKs
« Wait a little while before sending an ACK
« |If you receive others, then send one ACK for everything

— Piggybacked ACKs
« Send an ACK along with a return message

— Negative ACKs
» Use a sequence # on each message
» Receiver requests retransmission of a missed message
» More efficient but requires sender to buffer messages indefinitely

» TCP does the first three of these
... but now we have to do this for each recipient

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

18

-

Unreliable multicast (best effort)

.

* Basic multicast

» Hope it gets there

October 6, 2018 © 2014-2018 Paul Krzyzanowski

19

.

Message ordering

October 6, 2018 © 2014-2018 Paul Krzyzanowski

20

[Good Ordering

message a

order received

.

message b

Q

Io,

‘ a’b

a, b

October 6, 2018

© 2014-2018 Paul Krzyzanowski

21

[Bad Ordering

message a

.

message b

Q

Io,

order received

a, b

-~ N

October 6, 2018

© 2014-2018 Paul Krzyzanowski

22

[Good Ordering

Process 0

message a

Q

message b

Process 1

.

order received

a, b

a, b

October 6, 2018

© 2014-2018 Paul Krzyzanowski

23

/ Bad Ordering

Process 0

message a

Q

message b

Process 1

.

order received

a, b

-~ N

October 6, 2018

© 2014-2018 Paul Krzyzanowski

24

-

Sending vs. Receiving vs. Delivering

.

* Multicast receiver algorithm decides when to deliver a
message to the process.

* Areceived message may be:

— Delivered immediately
(put on a delivery queue that the process reads)

— Placed on a hold-back queue
(because we need to wait for an earlier message)

— Rejected/discarded
(duplicate or earlier message that we no longer want)

October 6, 2018 © 2014-2018 Paul Krzyzanowski

25

(Sending, delivering, holding back

send

Multicast sending
algorithm

deliver

— delivery
: queue
recelve’
message transmission J
) hold-back
queue

* discard

Multicast receiving
algorithm

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

26

-

Global time ordering

.

» All messages are delivered in exact order sent

« Assumes two events never happen at the exact same
time!

« Difficult (impossible) to achieve

* Not viable

October 6, 2018 © 2014-2018 Paul Krzyzanowski

27

-

Total ordering

» Consistent ordering at all receivers

« All messages are delivered at all group members in the same order
— They are sorted in the same order in the delivery queue

~
1. If a process sends m before m’

then any other process that delivers m’ will have delivered m.

2. |If a process delivers m’ before m”then every other process will
have delivered m’ before m”.

* Implementation:
— Attach unique totally sequenced message ID

— Receiver delivers a message to the application only if it has received all
messages with a smaller ID

28

-

Causal ordering

.

» Also known as partial ordering
— Messages sequenced by Lamport or Vector timestamps

é)
If multicast(G, m) — multicast(G, m’)
then every process that delivers m’ will have delivered m

_ .

* [f message m’is causally dependent on message m, all

processes must deliver m before m’.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

29

p
Causal ordering example

m Mmoo, m

PO 0 { 0s 1 } >
-
s my {mo, m;}
D P1 >
S

P {mo, my} S

2 hold back time

m; is causally dependent on the receipt of my.
Hence, m; must be delivered after m, has been delivered.

mo {my, m;}
%ﬁ 5 { my, my} Thisis OK X
(23 1
o my, My ¢ This is OK too
g b, {my, mo)

m; time

Any process can deliver them in any order.

.

m, and m,; have no causal relationship (they are concurrent).

Causal

Concurrent

October 6, 2018 © 2014-2018 Paul Krzyzanowski

30

p
Causal ordering — implementation

Implementation: P, receives a message from P,

« Each process keeps a precedence vector
(similar to vector timestamp)

» Vector is updated on multicast send and receive events

— Each entry = # of latest message from the corresponding group member
that causally precedes the event

Precedence Vector V|] Precedence Vector V[]

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski 32

-

Causal ordering — implementation

.

Algorithm

— When P,, sends a message, it increments its own entry and sends the
vector

Vlb] = Vy[b] + 1
Send V|, with the message

— When P, receives a message from P,

» Check that the message arrived in FIFO order from Py
Vp[b] == Vo[b] + 17

» Check that the message does not causally depend on something P, has not
seen:

Vi, i #b: Vi[i] < V[?

« If both conditions are satisfied, P, will deliver the message
At P,, update V,[b] = V,[b]+1

» Otherwise, hold the message until the conditions are satisfied

October 6, 2018 © 2014-2018 Paul Krzyzanowski 33

-

Causal Ordering: Example

.

4)\
mg (1.0.0) {mo, my} S
)
mp, m =
{ mo, m; } , -
e
{ m1’ mO } > <
time /
J

/
|

P, receives message m, from P, with V,=(1,1,0)

(1) Is this in FIFO order from P4?
Compare current V on P,: V,=(0,0,0) with received V from P4, V,=(1,1,0)
Yes: V,[1] = 0, received V4[1] = 1 = sequential order

(2) Is V4[i] = Voi] for all other i?
Compare the same vectors: V,=(0,0,0) vs. V,=(1,1,0)
No. (V4[0] = 1) > (V2[0] = 0)

Therefore: hold back m4 at P,

October 6, 2018 © 2014-2018 Paul Krzyzanowski

34

[Causal Ordering: Example

mg (1.0.0) {mo, my} S
mo, m
{ 0 1 } >
ms, m
{my, mo} .
time

------------ > (1,1,0) | <holding
P, receives message mg, from Py with V=(1,0,0)
(1) Is this in FIFO order from Py?
Compare current V on P,: V,=(0,0,0) with received V from P,, V,=(1,0,0)
Yes: V,[0] = 0, received V4[0] = 1 = sequential

(2) Is Vq[i] = Vi] for all other i?
Yes. (0= 0), (0=<0).

Deliver m,. Update precedence vector from (0, 0, 0) to (1, 0, 0)
Now check hold-back queue. Can we deliver m;?

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

-

Causal Ordering: Example

.

p
mg (1.0,0) { —— } ’

mn. M
{ mo, my} >

mq, m
{ 1 0} >

time
_____________ > (1,1,0)

(1) Is the held-back message m, in FIFO order from Py?
Compare current V on P,: V,=(1,0,0) with held-back V from Py, V4=(1,1,0)
Yes: (current V,[1] = 0) vs. (received V4[1] = 1) = sequential

(2) Is Vq[i] = V[i] for all other i?

Now yes. (Vo[0] =1) = (V,[0] =1) and element 2: (V,[2] = 0) < (V,[2] =0)
Deliver m;.
Causal ordering can be implemented more efficiently than total ordering:

No need for a global sequencer.

Expect reliable delivery but we may not need to send immediate
acknowledgements.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

36

-

Sync ordering

.

* Messages can arrive in any order

« Special message type
— Synchronization primitive

— Ensure all pending messages are delivered before any additional

(post-sync) messages are accepted

-

If m’ is sent with a sync-ordered primitive and m’is multicast,
then every process either delivers m before m’or delivers m

_ before m. y
~

Multiple sync-ordered primitives from the same process
must be delivered in order.)

October 6, 2018 © 2014-2018 Paul Krzyzanowski

37

i Single Source FIFO (SSF) ordering

sent.

before m’ from the same host

* Message m must be delivered before message m’iff m was sent

-
If a process issues a multicast of m followed by m’, then

every process that delivers m’ will have already delivered m.
.

~

J

» Messages from the same source are delivered in the order they were

38

i Single Source FIFO (SSF) ordering

,
If a process issues a multicast of m followed by m’, then

every process that delivers m’ will have already delivered m.
\

J

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

39

-

Unordered multicast

.

* Messages can be delivered in different order to different
members

» Order per-source does not matter.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

40

[Multicasting considerations

> atomic
'% reliable
E .
0 unreliable
S O > @ @
R\ o> O Q
o .
N\ Message Ordering

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

41

.

IP multicast routing

October 6, 2018 © 2014-2018 Paul Krzyzanowski

42

[|IP multicast routing

» Deliver messages to a subset of nodes
— Send to a multicast address

 How do we identify the recipients?

— Enumerate them in the header?
 What if we don’t know?
« What if we have thousands of recipients?

» Use a special address to identify a group of receivers

— IPv4: Class D multicast IP address

e 32-bit address that starts with 1110
(224.0.0.0/4 = 224.0.0.0 — 239.255.255.255)

— IPv6: 128-bit address with high-order bits 8 bits all 1

— Host group = set of machines listening to a particular multicast address
» A copy of the message is delivered to all receivers associated with that group

.

— A copy of the packet is delivered to all receivers associated with that group

October 6, 2018 © 2014-2018 Paul Krzyzanowski

43

i |IP multicasting

« Can span multiple physical networks

* Dynamic membership
— Machine can join or leave at any time

* No restriction on number of hosts in a group
* Machine does not need to be a member to send messages
« Efficient: Packets are replicated only when necessary

 Like IP, no delivery guarantees

\

October 6, 2018 © 2014-2018 Paul Krzyzanowski 44

IP multicast addresses

\

« Addresses chosen arbitrarily for an application
* Well-known addresses assigned by IANA

Internet Assigned Numbers Authority

IPv4 addresses: http://www.iana.org/assignments/multicast-addresses/multicast-addresses.xml

IPv6 addresses: https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml

— Similar to ports — service-based allocation

* For ports, we have:
— FTP: port 21, SMTP: port 25, HTTP: port 80

 For multicast, we have:

224.0.0.1: all systems on this subnet
224.0.0.2: all multicast routers on subnet
224.0.23.173: Philips Health

224.0.23.52: Amex Market Data

224.0.12.0-63: Microsoft & MSNBC
FF02:0:0:0:0:0:0:9: RIP routers

October 6, 2018 © 2014-2018 Paul Krzyzanowski

45

/
@

IGMP

.

* Internet Group Management Protocol (IGMP)
— Operates between a host and its attached router

— Goal: allow a router to determine to which of its networks to forward
IP multicast traffic

— IP protocol (IP protocol number 2)

 Three message types

— Membership _query

« Sent by a router to all hosts on an interface to determine the set of all
multicast groups that have been joined by the hosts on that interface

— Membership_report
* Host response to a query or an initial join or a group
— Leave_group

* Host indicates that it is no longer interested
« Optional: router infers this if the host does not respond to a query

October 6, 2018 © 2014-2018 Paul Krzyzanowski 46

-

Multicast Forwarding

.

IGMP allows a host to subscribe to receive a multicast stream

What about the source?
— There is no protocol for the source!
— It just sends one message to a class D address
— Routers have to do the work

October 6, 2018 © 2014-2018 Paul Krzyzanowski 47

[IGMP & Wide-Area Multicast Routing

.

recv
host

recv
host

recv

host

no protocol!

|

|
PIM

recv
host

recv
host

recv
host

recv

host

recv

host

recv

host

Internet multicast routing |

IGMP

October 6, 2018

© 2014-2018 Paul Krzyzanowski

48

-

Multicast Forwarding

.

* |IGMP: Internet Group Management Protocol

— Designed for routers to talk with hosts on directly connected
networks

* PIM: Protocol Independent Multicast
— Multicast Routing Protocol for delivering packets across routers
— Topology discovery is handled by other protocols

— Two forms:
1. Dense Mode (PIM-DM)
2. Sparse Mode (PIM-SM)

October 6, 2018 © 2014-2018 Paul Krzyzanowski

49

" Flooding: Dense Mode Multicast (PIM-DM)

» Relay multicast packet to all connected routers
— Use a spanning tree and reverse path forwarding (RPF) to avoid
loops
— Feedback & cut off if there are no interested receivers on a link

» Arouter sends a prune message.
« Periodically, routers send messages to refresh the prune state

— Flooding is initiated by the sender’s router

* Reverse path forwarding (RPF): avoid routing loops

— Packet is duplicated & forwarded ONLY IF it was received
via the link that is the shortest path to the sender

— Shortest path is found by checking the router’s forwarding table to
the source address

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

50

[Flooding: Dense Mode Multicast

« Advantage:
— Simple
— Good if the packet is desired in most locations

« Disadvantage:

— wasteful on the network, wasteful extra state & packet duplication on
routers

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski 51

[Sparse Mode Multicast (PIM-SM)

 |nitiated by the routers at each receiver

« Each router needs to ask for a multicast feed with a PIM
Join message
— Initiated by a router at the destination that gets an IGMP join
— Rendezvous Point: meeting place between receivers & source
« Join messages propagate to a defined rendezvous point (RP)

« Sender transmits only to the rendezvous point
« RP announcement messages inform edge routes of rendezvous points

— A Prune message stops a feed

« Advantage
— Packets go only where needed
— Creates extra state in routers only where needed

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

52

-

IP Multicast In use

.

* |nitially exciting:
— Internet radio, NASA shuttle missions, collaborative gaming

e But:

— Few ISPs enabled it

— For the user, required tapping into existing streams
(not good for on-demand content)

— Industry embraced unicast instead

October 6, 2018 © 2014-2018 Paul Krzyzanowski

53

[IP Multicast in use: IPTV

* IPTV has emerged as the biggest user of IP multicast
— Cable TV networks have migrated (or are migrating) to IP delivery

« Cable TV systems: aggregate bandwidth ~ 4.5 Gbps
— Video streams: MPEG-2 or MPEG-4 (H.264)
— MPEG-2 HD: ~30 Mbps = 150 channels = ~4.5 Gbps
— MPEG-4 HD: ~6-9 Mbps; DVD quality: ~2 Mbps

* Multicast
— Reduces the number of servers needed
— Reduces the number of duplicate network streams

\

October 6, 2018 © 2014-2018 Paul Krzyzanowski

54

" P Multicast in use: IPTV

« Multicast allows one stream of data to be sent to multiple
subscribers using a single address

 |[GMP from the client

— Subscribe to a TV channel
— Change channels

 Use unicast for video on demand

.

October 6, 2018 © 2014-2018 Paul Krzyzanowski

55

.

The end

October 6, 2018

© 2014-2018 Paul Krzyzanowski

56

