
CS 417 6 October 2018

Paul Krzyzanowski 1

Distributed Systems
07. Group Communication & Multicast

Paul Krzyzanowski

Rutgers University

Fall 2018

1October 6, 2018 © 2014-2018 Paul Krzyzanowski

Modes of communication
• One-to-One

– Unicast
• 1«1
• Point-to-point

– Anycast
• 1®nearest 1 of several identical nodes
• Introduced with IPv6; used with BGP routing protocol

• One-to-many
– Multicast

• 1®many
• group communication

– Broadcast
• 1®all

2October 6, 2018 © 2014-2018 Paul Krzyzanowski

Groups
Groups allow us to deal with a

collection of processes as one abstraction

Send message to one entity
– Deliver to entire group

Groups are dynamic
– Created and destroyed
– Processes can join or leave

• May belong to 0 or more groups

Primitives
join_group, leave_group, send_to_group,
query_membership (sometimes)

3October 6, 2018 © 2014-2018 Paul Krzyzanowski

Design Issues

• Closed vs. Open

– Closed: only group members can sent messages

• Peer vs. Hierarchical

– Peer: each member communicates with the entire group

– Hierarchical: go through coordinator(s)

• Root coordinator: forwards message to appropriate subgroup coordinators

• Managing membership & group creation/deletion

– Distributed vs. centralized

• Leaving & joining must be synchronous

• Fault tolerance

– Reliable message delivery? What about missing members?

4October 6, 2018 © 2014-2018 Paul Krzyzanowski

Failure considerations

The same things bite us with unicast communication

• Crash failure
– Process stops communicating

• Omission failure (typically due to network)
– Send omission: A process fails to send messages

– Receive omission: A process fails to receive messages

• Byzantine failure
– Some messages are faulty

• Partition failure
– The network may get segmented, dividing the group into two or

more unreachable sub-groups

October 6, 2018 © 2014-2018 Paul Krzyzanowski 5

Implementing
Group Communication
Mechanisms

October 6, 2018 © 2014-2018 Paul Krzyzanowski 6

CS 417 6 October 2018

Paul Krzyzanowski 2

Hardware multicast

If we have hardware support for multicast
– Group members listen on network address

listen addr = m1

listen addr = m1

listen addr = m1

send addr=m1

7October 6, 2018 © 2014-2018 Paul Krzyzanowski

Broadcast

Diffusion group: send to all clients & then filter
– Software filters incoming multicast address
– May use auxiliary address (not in the network address header) to

identify group

broadcast(id=m)
accept id=m

accept id=m

accept id=m

discard id=m

discard id=m

8October 6, 2018 © 2014-2018 Paul Krzyzanowski

Hardware multicast & broadcast
• Ethernet supports both multicast & broadcast
• Limited to local area networks

October 6, 2018 © 2014-2018 Paul Krzyzanowski 9

Software implementation: multiple unicasts

Sender knows group members

listen local addr = a2

listen local addr = a3

listen local addr = a5

send(a2)

send(a3)

10October 6, 2018 © 2014-2018 Paul Krzyzanowski

send(a5)

Software implementation: hierarchical

Multiple unicasts via group coordinator
– Coordinator knows group members
– Coordinator iterates through group members
– May support a hierarchy of coordinators

listen local addr = a2

listen local addr = a3

listen local addr = a5

coordinator
send(a2)

send(a3)

send(a5)
send(c)

11October 6, 2018 © 2014-2018 Paul Krzyzanowski

Reliability of multicasts

October 6, 2018 © 2014-2018 Paul Krzyzanowski 12

CS 417 6 October 2018

Paul Krzyzanowski 3

Atomic multicast

Atomicity
Message sent to a group arrives at all group members
• If it fails to arrive at anymember, no member will process it

Problems
Unreliable network
• Each message should be acknowledged
• Acknowledgements can be lost
Message sender might die

13October 6, 2018 © 2014-2018 Paul Krzyzanowski

Achieving atomicity

• General idea
– Ensure that every recipient acknowledges receipt of the message
– Only then allow the application to process the message
– If we give up on a recipient

then no recipient can process that received message

• Easier said than done!
– What if a recipient dies after acknowledging the message?

• Is it obligated to restart?
• If it restarts, will it know to process the message?

– What if the sender (or coordinator) dies partway through the
protocol?

October 6, 2018 © 2014-2018 Paul Krzyzanowski 14

Achieving atomicity – example 1
Retry through network failures & system downtime

• Sender & receivers maintain a persistent log

• Each message has a unique ID so we can discard duplicates
• Sender

– Send message to all group members
– Write message to log
– Wait for acknowledgement from each group member
– Write acknowledgement to log
– If timeout on waiting for an acknowledgement, retransmit to group member

• Receiver
– Log received non-duplicate message to persistent log
– Send acknowledgement

• NEVER GIVE UP!
– Assume that dead senders or receivers will be rebooted and will restart

where they left off

October 6, 2018 © 2014-2018 Paul Krzyzanowski 15

Achieving atomicity – example 2

Redefine the group
• If some members failed to receive the message:

– Remove the failed members from the group
– Then allow existing members to process the message

• But still need to account for the death of the sender
– Surviving group members may need to take over to ensure all

current group members receive the message

• This is the approach used in virtual synchrony

October 6, 2018 © 2014-2018 Paul Krzyzanowski 16

Reliable multicast
• All non-faulty group members will receive the message

– Assume sender & recipients will remain alive
– Network may have glitches

• Try to retransmit undelivered messages … but eventually give up

– It’s OK if some group members don’t get the message

• Acknowledgements
– Send message to each group member
– Wait for acknowledgement from each group member
– Retransmit to non-responding members
– Subject to feedback implosion

October 6, 2018 © 2014-2018 Paul Krzyzanowski 17

Optimizing Acknowledgements

• Easiest thing is to wait for an ACK before sending the next message

– But that incurs a round-trip delay

• Optimizations

– Pipelining
• Send multiple messages – receive ACKs asynchronously

• Set timeout – retransmit message for missing ACKs

– Cumulative ACKs
• Wait a little while before sending an ACK

• If you receive others, then send one ACK for everything

– Piggybacked ACKs

• Send an ACK along with a return message

– Negative ACKs

• Use a sequence # on each message

• Receiver requests retransmission of a missed message

• More efficient but requires sender to buffer messages indefinitely

• TCP does the first three of these

… but now we have to do this for each recipient

October 6, 2018 © 2014-2018 Paul Krzyzanowski 18

CS 417 6 October 2018

Paul Krzyzanowski 4

Unreliable multicast (best effort)

• Basic multicast

• Hope it gets there

19October 6, 2018 © 2014-2018 Paul Krzyzanowski

Message ordering

October 6, 2018 © 2014-2018 Paul Krzyzanowski 20

Good Ordering

message a

a

order received

a, b

a, b

message b

b

21October 6, 2018 © 2014-2018 Paul Krzyzanowski

Bad Ordering

message a

a

order received

a, b

b, a

message b

b

22October 6, 2018 © 2014-2018 Paul Krzyzanowski

Good Ordering

Process 0

Process 1

message a

a

message b
b

order received

a, b

a, b

23October 6, 2018 © 2014-2018 Paul Krzyzanowski

Bad Ordering

Process 0

Process 1

message a

a

message b
b

order received

a, b

b, a

24October 6, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 6 October 2018

Paul Krzyzanowski 5

Sending vs. Receiving vs. Delivering

• Multicast receiver algorithm decides when to deliver a
message to the process.

• A received message may be:
– Delivered immediately

(put on a delivery queue that the process reads)
– Placed on a hold-back queue

(because we need to wait for an earlier message)
– Rejected/discarded

(duplicate or earlier message that we no longer want)

25October 6, 2018 © 2014-2018 Paul Krzyzanowski

Sending, delivering, holding back

sender receiver

Multicast sending
algorithm

Multicast receiving
algorithm

hold-back
queue

delivery
queue

discard

?
message transmission

deliver

26October 6, 2018 © 2014-2018 Paul Krzyzanowski

send

receive

Global time ordering

• All messages are delivered in exact order sent

• Assumes two events never happen at the exact same

time!

• Difficult (impossible) to achieve

• Not viable

October 6, 2018 © 2014-2018 Paul Krzyzanowski 27

Total ordering
• Consistent ordering at all receivers

• All messages are delivered at all group members in the same order
– They are sorted in the same order in the delivery queue

• Implementation:
– Attach unique totally sequenced message ID
– Receiver delivers a message to the application only if it has received all

messages with a smaller ID

1. If a process sends m before m’
then any other process that delivers m’ will have delivered m.

2. If a process delivers m’ before m” then every other process will
have delivered m’ before m”.

28

Causal ordering

• Also known as partial ordering
– Messages sequenced by Lamport or Vector timestamps

• If message m’ is causally dependent on message m, all
processes must deliver m before m’.

If multicast(G, m) → multicast(G, m’)

then every process that delivers m’ will have delivered m

29October 6, 2018 © 2014-2018 Paul Krzyzanowski

Causal ordering example

October 6, 2018 © 2014-2018 Paul Krzyzanowski 30

P0

P1

P2

m0

m1

time

P0

P1

P2

m0

m1 time

m1 is causally dependent on the receipt of m0.
Hence, m1 must be delivered after m0 has been delivered.

m0 and m1 have no causal relationship (they are concurrent).
Any process can deliver them in any order.

{ m0, m1 }

{ m0, m1 }

{ m0, m1 }

{ m0, m1 }

{ m1, m0 }

{ m1, m0 }

C
au

sa
l

C
on

cu
rre

nt

hold back

C
A
U
S
A
L

C
O
N
C
U
R
R
E
N
T

This is OK

This is OK too

CS 417 6 October 2018

Paul Krzyzanowski 6

Causal ordering – implementation

Implementation: Pa receives a message from Pb

• Each process keeps a precedence vector
(similar to vector timestamp)

• Vector is updated on multicast send and receive events
– Each entry = # of latest message from the corresponding group member

that causally precedes the event

October 6, 2018 © 2014-2018 Paul Krzyzanowski 32

Pb Pa
(M, Vb)

Implementation: Pa receives a message from Pb

• Each process keeps a precedence vector
(similar to vector timestamp)

• Vector is updated on multicast send and receive events
– Each entry = # of latest message from the corresponding group member

that causally precedes the event

Precedence Vector Vb[] Precedence Vector Va[]

Causal ordering – implementation

Algorithm
– When Pb sends a message, it increments its own entry and sends the

vector
Vb[b] = Vb[b] + 1
Send Vb with the message

– When Pa receives a message from Pb

• Check that the message arrived in FIFO order from Pb:
Vb[b] == Va[b] + 1 ?

• Check that the message does not causally depend on something Pa has not
seen:

∀i, i ≠ b: Vb[i] ≤ Va[i] ?

• If both conditions are satisfied, Pa will deliver the message
At Pa, update Va[b] = Va[b]+1

• Otherwise, hold the message until the conditions are satisfied

October 6, 2018 © 2014-2018 Paul Krzyzanowski 33

Causal Ordering: Example

October 6, 2018 © 2014-2018 Paul Krzyzanowski 34

A
vo

id
 t
h
is

!P0

P1

P2

m0

m1

time

{ m0, m1 }

{ m0, m1 }

{ m1, m0 }

P2 receives message m1 from P1 with V1=(1,1,0)

(1) Is this in FIFO order from P1?

Compare current V on P2: V2=(0,0,0) with received V from P1, V1=(1,1,0)
Yes: V2[1] = 0, received V1[1] = 1 ⇒ sequential order

(2) Is V1[i] ≤ V2[i] for all other i?

Compare the same vectors: V2=(0,0,0) vs. V1=(1,1,0)
No. (V1[0] = 1) > (V2[0] = 0)

Therefore: hold back m1 at P2

(1,0,0)

(1,0,0)

(1,1,0)

(1,1,0)(0,0,0)

(0,0,0)

(0,0,0)

Causal Ordering: Example

October 6, 2018 © 2014-2018 Paul Krzyzanowski 35

P0

P1

P2

m0

m1

time

{ m0, m1 }

{ m0, m1 }

{ m1, m0 }

P2 receives message m0 from P0 with V=(1,0,0)
(1) Is this in FIFO order from P0?

Compare current V on P2: V2=(0,0,0) with received V from P2, V2=(1,0,0)
Yes: V2[0] = 0, received V1[0] = 1 ⇒ sequential

(2) Is V0[i] ≤ V2[i] for all other i?
Yes. (0 ≤ 0), (0 ≤ 0).

Deliver m0. Update precedence vector from (0, 0, 0) to (1, 0, 0)
Now check hold-back queue. Can we deliver m1?

(1,0,0)

(1,0,0)

(1,1,0)

(1,1,0)

(0,0,0)

(0,0,0)

(0,0,0)

(1,0,0)

← holding

Causal Ordering: Example

October 6, 2018 © 2014-2018 Paul Krzyzanowski 36

P0

P1

P2

m0

m1

time

{ m0, m1 }

{ m0, m1 }

{ m1, m0 }

(1) Is the held-back message m1 in FIFO order from P0?
Compare current V on P2: V2=(1,0,0) with held-back V from P0, V1=(1,1,0)
Yes: (current V2[1] = 0) vs. (received V1[1] = 1) ⇒ sequential

(2) Is V0[i] ≤ V2[i] for all other i?
Now yes. (V0[0] = 1) ≤ (V2[0] = 1) and element 2: (V0[2] = 0) ≤ (V2[2] = 0)

Deliver m1.

Causal ordering can be implemented more efficiently than total ordering:
No need for a global sequencer.
Expect reliable delivery but we may not need to send immediate
acknowledgements.

(1,0,0)

(1,0,0)

(1,1,0)

(1,1,0)

(0,0,0)

(0,0,0)

(0,0,0)

(1,0,0)

Sync ordering

• Messages can arrive in any order
• Special message type

– Synchronization primitive
– Ensure all pending messages are delivered before any additional

(post-sync) messages are accepted

37October 6, 2018 © 2014-2018 Paul Krzyzanowski

If m’ is sent with a sync-ordered primitive and m’ is multicast,
then every process either delivers m before m’ or delivers m’
before m.

Multiple sync-ordered primitives from the same process
must be delivered in order.

CS 417 6 October 2018

Paul Krzyzanowski 7

Single Source FIFO (SSF) ordering
• Messages from the same source are delivered in the order they were

sent.

• Message m must be delivered before message m’ iff m was sent
before m’ from the same host

If a process issues a multicast of m followed by m’, then
every process that delivers m’ will have already delivered m.

38

Single Source FIFO (SSF) ordering

If a process issues a multicast of m followed by m’, then

every process that delivers m’ will have already delivered m.

39October 6, 2018 © 2014-2018 Paul Krzyzanowski

Unordered multicast
• Messages can be delivered in different order to different

members

• Order per-source does not matter.

40October 6, 2018 © 2014-2018 Paul Krzyzanowski

Multicasting considerations

atomic

reliable

unreliable

uno
rde

red syn
c

cau
sal tota

l
glo

bal

uno
rde

red
 FIFO

Message Ordering

R
el

ia
bi

lit
y

41October 6, 2018 © 2014-2018 Paul Krzyzanowski

IP multicast routing

October 6, 2018 © 2014-2018 Paul Krzyzanowski 42

IP multicast routing
• Deliver messages to a subset of nodes

– Send to a multicast address

• How do we identify the recipients?
– Enumerate them in the header?

• What if we don’t know?
• What if we have thousands of recipients?

• Use a special address to identify a group of receivers
– A copy of the packet is delivered to all receivers associated with that group
– IPv4: Class D multicast IP address

• 32-bit address that starts with 1110
(224.0.0.0/4 = 224.0.0.0 – 239.255.255.255)

– IPv6: 128-bit address with high-order bits 8 bits all 1
– Host group = set of machines listening to a particular multicast address

• A copy of the message is delivered to all receivers associated with that group

October 6, 2018 © 2014-2018 Paul Krzyzanowski 43

CS 417 6 October 2018

Paul Krzyzanowski 8

IP multicasting

• Can span multiple physical networks

• Dynamic membership
– Machine can join or leave at any time

• No restriction on number of hosts in a group

• Machine does not need to be a member to send messages

• Efficient: Packets are replicated only when necessary

• Like IP, no delivery guarantees

44October 6, 2018 © 2014-2018 Paul Krzyzanowski

IP multicast addresses

• Addresses chosen arbitrarily for an application

• Well-known addresses assigned by IANA

Internet Assigned Numbers Authority
IPv4 addresses: http://www.iana.org/assignments/multicast-addresses/multicast-addresses.xml

IPv6 addresses: https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml

– Similar to ports – service-based allocation

• For ports, we have:

– FTP: port 21, SMTP: port 25, HTTP: port 80

• For multicast, we have:

224.0.0.1: all systems on this subnet

224.0.0.2: all multicast routers on subnet

224.0.23.173: Philips Health

224.0.23.52: Amex Market Data

224.0.12.0-63: Microsoft & MSNBC

FF02:0:0:0:0:0:0:9: RIP routers

45October 6, 2018 © 2014-2018 Paul Krzyzanowski

IGMP
• Internet Group Management Protocol (IGMP)

– Operates between a host and its attached router
– Goal: allow a router to determine to which of its networks to forward

IP multicast traffic
– IP protocol (IP protocol number 2)

• Three message types
– Membership_query

• Sent by a router to all hosts on an interface to determine the set of all
multicast groups that have been joined by the hosts on that interface

– Membership_report
• Host response to a query or an initial join or a group

– Leave_group
• Host indicates that it is no longer interested
• Optional: router infers this if the host does not respond to a query

October 6, 2018 © 2014-2018 Paul Krzyzanowski 46

Multicast Forwarding

IGMP allows a host to subscribe to receive a multicast stream

What about the source?
– There is no protocol for the source!

– It just sends one message to a class D address
– Routers have to do the work

October 6, 2018 © 2014-2018 Paul Krzyzanowski 47

IGMP & Wide-Area Multicast Routing

recv
host

router

recv
host

recv
host

router

router

router

recv
host

recv
host

recv
host

recv
host

recv
host

recv
host

IGMP

IGMP

PIM

48October 6, 2018 © 2014-2018 Paul Krzyzanowski

Internet multicast routing

send
host

router

no protocol!

Multicast Forwarding

• IGMP: Internet Group Management Protocol
– Designed for routers to talk with hosts on directly connected

networks

• PIM: Protocol Independent Multicast
– Multicast Routing Protocol for delivering packets across routers
– Topology discovery is handled by other protocols
– Two forms:

1. Dense Mode (PIM-DM)
2. Sparse Mode (PIM-SM)

49October 6, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 6 October 2018

Paul Krzyzanowski 9

Flooding: Dense Mode Multicast (PIM-DM)

• Relay multicast packet to all connected routers

– Use a spanning tree and reverse path forwarding (RPF) to avoid

loops

– Feedback & cut off if there are no interested receivers on a link

• A router sends a prune message.

• Periodically, routers send messages to refresh the prune state

– Flooding is initiated by the sender’s router

• Reverse path forwarding (RPF): avoid routing loops

– Packet is duplicated & forwarded ONLY IF it was received

via the link that is the shortest path to the sender

– Shortest path is found by checking the router’s forwarding table to

the source address

October 6, 2018 © 2014-2018 Paul Krzyzanowski 50

Flooding: Dense Mode Multicast

• Advantage:
– Simple
– Good if the packet is desired in most locations

• Disadvantage:
– wasteful on the network, wasteful extra state & packet duplication on

routers

October 6, 2018 © 2014-2018 Paul Krzyzanowski 51

Sparse Mode Multicast (PIM-SM)
• Initiated by the routers at each receiver
• Each router needs to ask for a multicast feed with a PIM

Join message
– Initiated by a router at the destination that gets an IGMP join
– Rendezvous Point: meeting place between receivers & source

• Join messages propagate to a defined rendezvous point (RP)
• Sender transmits only to the rendezvous point
• RP announcement messages inform edge routes of rendezvous points

– A Prune message stops a feed

• Advantage
– Packets go only where needed
– Creates extra state in routers only where needed

52October 6, 2018 © 2014-2018 Paul Krzyzanowski

IP Multicast in use
• Initially exciting:

– Internet radio, NASA shuttle missions, collaborative gaming

• But:
– Few ISPs enabled it
– For the user, required tapping into existing streams

(not good for on-demand content)
– Industry embraced unicast instead

53October 6, 2018 © 2014-2018 Paul Krzyzanowski

IP Multicast in use: IPTV

• IPTV has emerged as the biggest user of IP multicast
– Cable TV networks have migrated (or are migrating) to IP delivery

• Cable TV systems: aggregate bandwidth ~ 4.5 Gbps
– Video streams: MPEG-2 or MPEG-4 (H.264)
– MPEG-2 HD: ~30 Mbps ⇒ 150 channels = ~4.5 Gbps
– MPEG-4 HD: ~6-9 Mbps; DVD quality: ~2 Mbps

• Multicast
– Reduces the number of servers needed
– Reduces the number of duplicate network streams

54October 6, 2018 © 2014-2018 Paul Krzyzanowski

IP Multicast in use: IPTV

• Multicast allows one stream of data to be sent to multiple
subscribers using a single address

• IGMP from the client
– Subscribe to a TV channel
– Change channels

• Use unicast for video on demand

October 6, 2018 © 2014-2018 Paul Krzyzanowski 55

CS 417 6 October 2018

Paul Krzyzanowski 10

The end

56October 6, 2018 © 2014-2018 Paul Krzyzanowski

