
CS 417 24 September 2018

Paul Krzyzanowski 1

Distributed Systems
05. Clock Synchronization

Paul Krzyzanowski

Rutgers University

Fall 2018

1September 24, 2018 © 2014-2018 Paul Krzyzanowski

Synchronization
Synchronization covers interactions among distributed processes

September 24, 2018 © 2014-2018 Paul Krzyzanowski 2

Clocks Identifying when something happened

Mutual exclusion Only one entity can do an operation at a time

Leader election Who coordinates activity?

Message consistency Does everyone have the same view of events?

Agreement Can everyone agree on a proposed value?

All of these are trivial in non-distributed systems
All of these are tricky in distributed systems

Clock Synchronization

September 24, 2018 © 2014-2018 Paul Krzyzanowski 3

Why?

• Allow a process to identify "now" in a way that's
consistent with other processes on other systems

• Temporal ordering of events from concurrent processes
– Example: replication & identifying latest versions

• Last writer wins or latest version wins

September 24, 2018 © 2014-2018 Paul Krzyzanowski 4

Simple approach to replication

September 24, 2018 © 2014-2018 Paul Krzyzanowski 5

P0

P1

Data store

Replica data store

x = 1

x = 1
x = 4

x = 4
x = 8

x = 8

Simple approach to replication

September 24, 2018 © 2014-2018 Paul Krzyzanowski 6

P0

P1

Data store

Replica data store

x = 4

x = 8
x = 4

x = 4
x = 8

x = 8

Arrives first

Arrives first

Inconsistent replicas!

CS 417 24 September 2018

Paul Krzyzanowski 2

Simple approach to replication
Send a time stamp with each modification request
Only newer timestamps can override older data

September 24, 2018 © 2014-2018 Paul Krzyzanowski 7

P0

P1

Data store

Replica data store

x = 8, T = 7:02

x = 8, T = 7:02
x = 4, T=6:58

x = 4, T=6:58

x = 8, T=7:02

x = 8, T=7:02

x=8 overrides x=4

Arrives first

x=4 does NOT
override x=8

There are problems with this … but physical clocks help this work most of the time

Logical vs. physical clocks

• Physical clocks keep time of day
– Consistent across systems

• Logical clock keeps track of event ordering
– among related (causal) events

8September 24, 2018 © 2014-2018 Paul Krzyzanowski

Physical clocks

September 24, 2018 © 2014-2018 Paul Krzyzanowski 9

Problem: Get two systems to agree on time

• Why is it hard?

– Two clocks hardly ever agree

– Quartz oscillators oscillate at slightly different frequencies

• Clocks tick at different rates

– Create ever-widening gap in perceived time

– Clock Drift

• Difference between two clocks at one point in time

– Relative offset

• Short-term variation in frequency

– Jitter

• Also note: astronomical time vs. relative time

– Time of day vs. count of seconds from epoch

10September 24, 2018 © 2014-2018 Paul Krzyzanowski

Dealing with drift

Not good idea to set a clock back
– Illusion of time moving backwards can confuse message ordering

and software development environments

Go for gradual clock correction

If fast:
Make the clock run slower until it synchronizes

If slow:
Make the clock run faster until it synchronizes

11September 24, 2018 © 2014-2018 Paul Krzyzanowski

Dealing with drift

The OS can do this:

1. Redefine the rate at which system time is advanced with each
interrupt

or

2. Read the counter but compensate for drift

Adjustment changes slope of system time:
Linear compensation function

12September 24, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 24 September 2018

Paul Krzyzanowski 3

Compensating for a fast clock

UTC time, t

C
om

pu
te

r’s
 ti

m
e,

 C

Linear compensation
function applied

Clock synchronized
offset

13September 24, 2018 © 2014-2018 Paul Krzyzanowski

pe
rfe

ct
tim

e

Compensating for a fast clock

UTC time, t

C
om

pu
te

r’s
 ti

m
e,

 C

Now we’re drifting again!

14September 24, 2018 © 2014-2018 Paul Krzyzanowski

pe
rfe

ct
tim

e

Resynchronizing

After synchronization period is reached
– Resynchronize periodically
– Successive application of a second linear compensating function

can bring us closer to true slope

Long-term clock stability is not guaranteed
The system clock can still drift based on changes in temperature,
pressure, humidity, and age of the crystal

Keep track of adjustments and apply continuously
– e.g., BSD adjtimex & Linux adjtimex system calls

and hwclock command

15September 24, 2018 © 2014-2018 Paul Krzyzanowski

Going to sleep

• RTC keeps on ticking when the system is off
(or sleeping)

• OS cannot apply correction continually

• Estimate drift on wake-up and apply a correction factor

16September 24, 2018 © 2014-2018 Paul Krzyzanowski

Getting accurate time

• Attach GPS receiver to each computer
– Accurate to ~ 40 ns

• Not practical solution for every machine
– Cost, power, convenience, environment
– Accuracy gets worse near buildings, bridges, trees, …

17September 24, 2018 © 2014-2018 Paul Krzyzanowski

Synchronize from a time server
Simplest synchronization technique

– Send a network request to obtain the time
– Set the time to the returned value

Does not account for network or processing latency

what’s the time?

3:42:19

client time
server

18September 24, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 24 September 2018

Paul Krzyzanowski 4

Cristian’s algorithm
Compensate for delays

– Note times:
• request sent: T0

• reply received: T1

– Assume network delays are symmetric

server

client
time

request reply

T0 T1

Tserver

19September 24, 2018 © 2014-2018 Paul Krzyzanowski

Cristian’s algorithm

Client sets time to:

server

client
time

request reply

T0 T1

Tserver

estimated overhead
in each direction

=

20September 24, 2018 © 2014-2018 Paul Krzyzanowski

Tnew =Tserver +
T1 −T0
2

!" − !$
2

Error bounds

If the minimum message transit time (Tmin) is known:

Place bounds on accuracy of result

21September 24, 2018 © 2014-2018 Paul Krzyzanowski

Error bounds

server

client
time

request reply

T0 T1

Tserver

Tmin Tmin
Earliest time message
arrives Latest time message

leaves

range = T1 - T0 - 2Tmin

22September 24, 2018 © 2014-2018 Paul Krzyzanowski

accuracy of result = ±
T1 −T0
2

−Tmin

Cristian’s algorithm: example

• Send request at 5:08:15.100 (T0)

• Receive response at 5:08:15.900 (T1)

– Response contains 5:09:25.300 (Tserver)

• Elapsed time is T1 -T0

5:08:15.900 - 5:08:15.100 = 800 ms

• Best guess: timestamp was generated 400 ms ago

• Set time to Tserver+ elapsed time

5:09:25.300 + 400 = 5:09.25.700

23September 24, 2018 © 2014-2018 Paul Krzyzanowski

Note:

1 000 ms = 1 s

1 000 000 µs = 1s

Cristian’s algorithm: example

If best-case message time=200 ms

September 24, 2018 © 2014-2018 Paul Krzyzanowski 24

server

client
time

request reply

T0 T1

Tserver

200 200

800

Error =

T0 = 5:08:15.100
T1 = 5:08:15.900
Ts = 5:09:25:300
Tmin = 200 ms

±
900 −100

2
−200 = ±800

2
−200 = ±200

CS 417 24 September 2018

Paul Krzyzanowski 5

Berkeley Algorithm

• Gusella & Zatti, 1989

• Assumes no machine has an accurate time source

• Obtains average from participating computers

• Synchronizes all clocks to a fault-tolerant average

25September 24, 2018 © 2014-2018 Paul Krzyzanowski

Berkeley Algorithm: example

3:25 2:50 9:10

3:00

1. Request timestamps from all slaves

3:25
2:50

9:10

26September 24, 2018 © 2014-2018 Paul Krzyzanowski

master

Berkeley Algorithm: example

3:25 2:50 9:10

3:00

2. Compute fault-tolerant average:

3:2
5

2:50
9:10

27September 24, 2018 © 2014-2018 Paul Krzyzanowski

Suppose
max ∂=0:45

3 : 25 +2 : 50 +3 : 00
3

= 3 : 05

master

Berkeley Algorithm: example

3:25 2:50 9:10

3:00

3. Send offset to each client

-0:
20 +0:15

-6:05

28September 24, 2018 © 2014-2018 Paul Krzyzanowski

master

Network Time Protocol, NTP

• 1991, 1992
– Internet Standard, version 3: RFC 1305

• June 2010
– Internet Standard, version 4: RFC 5905-5908
– IPv6 support
– Improve accuracy to tens of microseconds
– Dynamic server discovery

29September 24, 2018 © 2014-2018 Paul Krzyzanowski

NTP Goals

• Enable clients across Internet to be accurately synchronized to UTC
despite message delays

– Use statistical techniques to filter data and gauge quality of results

• Provide reliable service

– Survive lengthy losses of connectivity

– Redundant paths

– Redundant servers

• Provide scalable service

– Enable huge numbers of clients to synchronize frequently

– Offset effects of clock drift

• Provide protection against interference

– Authenticate source of data

30September 24, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 24 September 2018

Paul Krzyzanowski 6

NTP servers
Arranged in strata

– Stratum 0 = master clock

– 1st stratum: systems connected directly
to accurate time source

– 2nd stratum: systems synchronized
from 1st stratum systems

– …

– 15th stratum: systems synchronized
from 14th stratum systems

Synchronization Subnet

2

3

4

31September 24, 2018 © 2014-2018 Paul Krzyzanowski

1

0

NTP Synchronization Modes

Multicast mode
– for high speed LANs
– Lower accuracy but efficient

Procedure call mode
– Cristian’s algorithm

Symmetric mode
– Peer servers can synchronize with each other to provide mutual

backup
• Usually used with stratum 1 & 2 servers
• Pair of servers retain data to improve synchronization over time

All messages are delivered unreliably with UDP (port 123)

32September 24, 2018 © 2014-2018 Paul Krzyzanowski

NTP Clock Quality

• Precision
– Smallest increase of time that can be read from the clock

• Jitter
– Difference in successive measurements
– Due to network delays, OS delays, and clock oscillator instability

• Accuracy
– How close is the clock to UTC?

33September 24, 2018 © 2014-2018 Paul Krzyzanowski

NTP messages
• Procedure call and symmetric mode

– Messages exchanged in pairs: request & response

• Time encoded as a 64 bit value:
– Divide by 232 to get the number of seconds since Jan 1 1900 UTC

• NTP calculates:
– Offset for each pair of messages (θ)

• Estimate of time offset between two clocks
– Delay (δ)

• Travel time: ½ of total delay minus remote processing time
– Dispersion

• Maximum offset error relative to reference clock

• Use this data to find preferred server:
– Probe multiple servers – each several times
– Pick lowest dispersion … at the lowest stratum if tied

34September 24, 2018 © 2014-2018 Paul Krzyzanowski

SNTP

Simple Network Time Protocol
– Based on Unicast mode of NTP – subset of NTP, not new protocol
– Operates in multicast or procedure call mode
– Recommended for environments where server is root node and

client is leaf of synchronization subnet
– Root delay, root dispersion, reference timestamp ignored

v3 RFC 2030, October 1996

v4 RFC 5905, June 2010

35September 24, 2018 © 2014-2018 Paul Krzyzanowski

SNTP Example

Round-trip network delay:

server

client
time

request reply

T1

T2

T4

T3

Time offset:

36September 24, 2018 © 2014-2018 Paul Krzyzanowski

! = ($%−$') + ($* − $+)
2- = $+ − $' − ($* − $%)

CS 417 24 September 2018

Paul Krzyzanowski 7

SNTP Example

server

client
time

request reply

T1

T2

T4

T3

37September 24, 2018 © 2014-2018 Paul Krzyzanowski

Round-trip network delay: Time offset:

! = ($%−$') + ($* − $+)
2- = $+ − $' − ($* − $%)

SNTP example

Offset =
((800 - 1100) + (850 - 1200)) / 2

= ((-300) + (-350)) / 2
= -650 / 2 = -325

Set time to T4 + t
= 1200 - 325 = 875

server

client
time

request reply

T1=1100

T2=800

T4=1200

T3=850

38September 24, 2018 © 2014-2018 Paul Krzyzanowski

Time offset:

! = ($%−$') + ($* − $+)
2

SNTP = Cristian’s algorithm

server

client
time

request reply

T1

T2

T4

T3

Ts

39September 24, 2018 © 2014-2018 Paul Krzyzanowski

!" =
!$ + !&
2Just define

Key Points: Physical Clocks

• Cristian’s algorithm & SNTP
– Set clock from server
– But account for network delays
– Error: uncertainty due to network/processor latency

• Errors are additive
• Example: ±10 ms and ±20 ms = ±30 ms

• Adjust for local clock drift
– Linear compensating function

40September 24, 2018 © 2014-2018 Paul Krzyzanowski

Precision Time Protocol

September 24, 2018 © 2014-2018 Paul Krzyzanowski 41

PTP: IEEE 1588 Precision Time Protocol
• Designed to synchronize clocks on a LAN to sub-

microsecond precision
– Designed for LANs, not global: low jitter, low latency
– Timestamps ideally generated at the MAC or PHY layers to minimize

delay and jitter

• Determine master clock
– Use a Best Master Clock algorithm to determine which clock in the

network is most precise
– Other clocks become slaves

• Two phases in synchronization
1. Offset correction
2. Delay correction

September 24, 2018 © 2014-2018 Paul Krzyzanowski 42

CS 417 24 September 2018

Paul Krzyzanowski 8

PTP: Choose the “best” clock

Best Master Clock

• Distributed election based on properties of clocks

• Criteria from highest to lowest:

– Priority 1 (admin-defined hint)

– Clock class

– Clock accuracy

– Clock variance: estimate of stability based on past syncs

– Priority 2 (admin-defined hint #2)

– Unique ID (tie-breaker)

43September 24, 2018 © 2014-2018 Paul Krzyzanowski

PTP: Master initiates sync

master

slave

time

time

Master initiates the protocol by sending a sync message containing a timestamp

Slave timestamps arrival with a timestamp from its local clock

Offset + Delay = T2 - T1

T1

T2

sync

44September 24, 2018 © 2014-2018 Paul Krzyzanowski

PTP: Send delay request

master

slave
time

time

Slave needs to figure out the network delay. Send a delay request

Note the time it was sent.

T1

T2 T3

T4

sync

de
la

y
re

qu
es

t

45September 24, 2018 © 2014-2018 Paul Krzyzanowski

PTP: Receive delay response

master

slave
time

time

Master marks the time of arrival and returns it in a delay response

Delay response = Delay - Offset = T4 – T3

T1

T2 T3

T4

sync

de
la

y
re

qu
es

t

delay response

46September 24, 2018 © 2014-2018 Paul Krzyzanowski

PTP: Slave computes offset

master

slave

time

time

master_slave_difference = T2 – T1 = delay + offset

slave_master_difference = T4 – T3 = delay – offset

master_slave_difference – slave_master_difference = 2(offset)

T2 – T1 – T4 + T3 = 2 (offset)

offset = (T2 – T1 – T4 + T3) / 2

T1

T2 T3

T4

sync

de
la

y
re

qu
es

t

delay response

47September 24, 2018 © 2014-2018 Paul Krzyzanowski

NTP vs. PTP

• Range

– NTP: nodes widely spread out on the Internet

– PTP: local area networks

• Accuracy

– NTP usually several milliseconds on WAN

– PTP usually sub-microsecond on LAN

48September 24, 2018 © 2014-2018 Paul Krzyzanowski

CS 417 24 September 2018

Paul Krzyzanowski 9

The end

49September 24, 2018 © 2014-2018 Paul Krzyzanowski

