
Distributed Systems
03. Remote Procedure Calls

Paul Krzyzanowski

Rutgers University

Spring 2020

1February 3, 2020 © 2014-2020 Paul Krzyzanowski

Socket-based communication

• Socket API: all we get from the OS to access the network

• Socket = distinct end-to-end communication channels

• Read/write model

• Line-oriented, text-based protocols common
– Not efficient but easy to debug & use

2February 3, 2020 © 2014-2020 Paul Krzyzanowski

Sample SMTP Interaction

February 3, 2020 © 2014-2020 Paul Krzyzanowski 3

$ telnet porthos.rutgers.edu 25
Trying 128.6.25.90...
Connected to porthos.rutgers.edu.
Escape character is '^]'.
220 porthos.cs.rutgers.edu ESMTP Postfix
HELO cs.rutgers.edu
250 porthos.cs.rutgers.edu
MAIL FROM: <pxk@cs.rutgers.edu>
250 2.1.0 Ok
RCPT TO: <p@pk.org>
250 2.1.5 Ok
DATA
354 End data with <CR><LF>.<CR><LF>
From: Paul Krzyzanowski <pxk@cs.rutgers.edu>
Subject: test message
Date: Mon, 17 Feb 2020 17:00:16 -0500
To: Whomever <testuser@pk.org>

Hi,
This is a test
.
250 2.0.0 Ok: queued as AC37C3000175
quit
221 2.0.0 Bye
Connection closed by foreign host.

This is the message body.
Headers may define the structure of the
message but are ignored for delivery.

SMTP = Simple Mail Transfer Protocol

Sample HTTP Interaction

February 3, 2020 © 2014-2020 Paul Krzyzanowski 4

$ telnet www.google.com 80
Trying 172.217.12.164...
Connected to www.google.com.
Escape character is '^]'.
GET /index.html HTTP/1.1
HOST: www.google.com
Accept: image/gif, image/jpeg, */*
Accept-Language: en-us
User-Agent: Mozilla/4.0

HTTP/1.1 200 OK
Date: Mon, 03 Feb 2020 18:31:59 GMT
Expires: -1
Cache-Control: private, max-age=0
Content-Type: text/html; charset=ISO-8859-1
…
Transfer-Encoding: chunked

73c5
<!doctype html><html itemscope=""
itemtype="http://schema.org/WebPage" lang="en"><head>

…
…

First part of the response –
HTTP headers

HTTP = Hypertext Transfer Protocol

Second part of the response –
HTTP content

Problems with the sockets API
The sockets interface forces a read/write mechanism

Programming is often easier with a functional interface

To make distributed computing look more like centralized
computing, I/O (read/write) is not the way to go

5February 3, 2020 © 2014-2020 Paul Krzyzanowski

RPC
1984: Birrell & Nelson

– Mechanism to call procedures on other machines

Remote Procedure Call

Goal: it should appear to the programmer that a
normal call is taking place

6February 3, 2020 © 2014-2020 Paul Krzyzanowski

Implementing RPC

No architectural support for remote procedure calls

Simulate it with tools we have
(local procedure calls)

Simulation makes RPC a
language-level construct

instead of an
operating system construct

The OS gives us
sockets

The compiler
creates code to

send messages to
invoke remote

functions

7February 3, 2020 © 2014-2020 Paul Krzyzanowski

Implementing RPC

The trick:

Create stub functions
to make it appear to the user that the call is local

On the client
The stub function (proxy) has the function’s interface
Packages parameters and calls the server

On the server
The stub function (skeleton) receives the request and calls the
local function

8February 3, 2020 © 2014-2020 Paul Krzyzanowski

client server

Stub functions

network routines

server functions

server stub
(skeleton)

network routines

1. Client calls stub (params on stack)

client functions

client stub
(proxy)

9February 3, 2020 © 2014-2020 Paul Krzyzanowski

OS OS

client server

Stub functions

server functions

server stub
(skeleton)

network routines

2. Stub marshals params to network message

client functions

client stub
(proxy)

network routines

Marshalling = put parameters in a form suitable for transmission over a network (serialized)

10February 3, 2020 © 2014-2020 Paul Krzyzanowski

OS OS

client server

Stub functions
3. Network message sent to server

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines

11February 3, 2020 © 2014-2020 Paul Krzyzanowski

OS OS

client server

Stub functions
4. Receive message: send it to server stub

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines

12February 3, 2020 © 2014-2020 Paul Krzyzanowski

OS OS

client server

Stub functions
5. Unmarshal parameters, call server function

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines

13February 3, 2020 © 2014-2020 Paul Krzyzanowski

OS OS

client server

Stub functions
6. Return from server function

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines

14February 3, 2020 © 2014-2020 Paul Krzyzanowski

OS OS

client server

Stub functions
7. Marshal return value and send message

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines

15February 3, 2020 © 2014-2020 Paul Krzyzanowski

OS OS

client server

Stub functions
8. Transfer message over network

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines

16February 3, 2020 © 2014-2020 Paul Krzyzanowski

OS OS

client server

Stub functions
9. Receive message: client stub is receiver

client functions

client stub
(proxy)

network routines

server functions

server stub
(skeleton)

network routines

17February 3, 2020 © 2014-2020 Paul Krzyzanowski

OS OS

client server

Stub functions
10. Unmarshal return value(s), return to client code

client functions

network routines

server functions

server stub
(skeleton)

network routines

18

client stub
(proxy)

February 3, 2020 © 2014-2020 Paul Krzyzanowski

OS OS

A client proxy looks like the remote function

• Client stub has the same interface as the remote function

• Looks & feels like the remote function to the programmer
– But its function is to

• Marshal parameters
• Send the message
• Wait for a response from the server
• Unmarshal the response & return the appropriate data
• Generate exceptions if problems arise

19February 3, 2020 © 2014-2020 Paul Krzyzanowski

1. Dispatcher – the listener
– Receives client requests
– Identifies appropriate function (method)

2. Skeleton – the unmarshaller & caller
– Unmarshals parameters
– Calls the local server procedure
– Marshals the response & sends it back to the dispatcher

All this is invisible to the programmer
– The programmer doesn’t deal with any of this
– Dispatcher + Skeleton may be integrated

• Depends on implementation

A server stub contains two parts

20February 3, 2020 © 2014-2020 Paul Krzyzanowski
R

ec
ei

ve
 re

qu
es

ts

U
nm

ar
sh

al
da

ta

U
se

r f
un

ct
io

n

RPC Benefits

• RPC gives us a procedure call interface

• Writing applications is simplified
– RPC hides all network code into stub functions
– Application programmers don’t have to worry about details

• Sockets, port numbers, byte ordering

• Where is RPC in the OSI model?
– Layer 5: Session layer: Connection management
– Layer 6: Presentation: Marshaling/data representation
– Uses the transport layer (4) for communication (TCP/UDP)

21February 3, 2020 © 2014-2020 Paul Krzyzanowski

RPC has challenges

22February 3, 2020 © 2014-2020 Paul Krzyzanowski

RPC Issues

• Parameter passing
– Pass by value or pass by reference?
– Pointerless representation

• Service binding. How do we locate the server endpoint?
– Central DB
– DB of services per host

• Transport protocol
– TCP? UDP? Both?

• When things go wrong
– Opportunities for failure

February 3, 2020 © 2014-2020 Paul Krzyzanowski 23

When things go wrong

• Semantics of remote procedure calls
– Local procedure call: exactly once

• Most RPC systems will offer either
– at least once semantics
– or at most once semantics

• Decide based on application
– idempotent functions: may be run any number of times without harm
– non-idempotent functions: those with side-effects

• Ideally – design your application to be idempotent
– … and stateless
– Not always easy!
– Store transaction IDs, previous return data, etc.

24February 3, 2020 © 2014-2020 Paul Krzyzanowski

More issues

Performance
– RPC is slower … a lot slower (why?)

Security
– messages may be visible over network – do we need to hide them?
– Authenticate client?
– Authenticate server?

25February 3, 2020 © 2014-2020 Paul Krzyzanowski

Programming with RPC

Language support
– Many programming languages have no language-level concept of

remote procedure calls
(C, C++, Java <J2SE 5.0, …)
• These compilers will not automatically generate client and server stubs

– Some languages have support that enables RPC
(Java, Python, Haskell, Go, Erlang)
• But we may need to deal with heterogeneous environments (e.g., Java

communicating with a Python service)

Common solution
– Interface Definition Language (IDL): describes remote procedures

– Separate compiler that generate stubs (pre-compiler)

26February 3, 2020 © 2014-2020 Paul Krzyzanowski

Interface Definition Language (IDL)
• Allow programmer to specify remote procedure interfaces

(names, parameters, return values)

• Pre-compiler can use this to generate client and server stubs
– Marshaling code
– Unmarshaling code
– Network transport routines
– Conform to defined interface

• An IDL looks similar to function prototypes

27February 3, 2020 © 2014-2020 Paul Krzyzanowski

RPC compiler

IDL RPC
compiler

client code (main)

server functions

client stub

headers

server skeleton

data conversion

data conversion compiler

compiler server

client

Code you write

Code RPC compiler generates

28February 3, 2020 © 2014-2020 Paul Krzyzanowski

Sometimes called a
protocol compiler

Writing the program

• Client code has to be modified
– Initialize RPC-related options

• Identify transport type
• Locate server/service

– Handle failure of remote procedure calls

• Server functions
– Generally need little or no modification

29February 3, 2020 © 2014-2020 Paul Krzyzanowski

Sending data over the network

February 3, 2020 © 2014-2020 Paul Krzyzanowski 30

Stream of bytes
struct item {

char name[64];

unsigned long id;

int number_in_stock;

float rating;

double price;

} scratcher = {

"Bear Claw Black Telescopic Back Scratcher",

00120,

332,

4.6,

5.99

}

Is stored in memory as:
42 65 61 72 20 43 6c 61 77 20 42 6c 61 63 6b 20 54 ...

February 3, 2020 © 2014-2020 Paul Krzyzanowski 31

Representing data

No such thing as
incompatibility problems on local system

Remote machine may have:
– Different byte ordering
– Different sizes of integers and other types
– Different floating point representations
– Different character sets
– Alignment requirements

32February 3, 2020 © 2014-2020 Paul Krzyzanowski

Representing data
IP (headers) forced all to use big endian byte ordering for 16- and 32-bit values

Big endian: Most significant byte in low memory
– SPARC < V9, Motorola 680x0, older PowerPC

Little endian: Most significant byte in high memory
– Intel/AMD IA-32, x64

Bi-endian: Processor may operate in either mode
– ARM, PowerPC, MIPS, SPARC V9, IA-64 (Intel Itanium)

main() {
unsigned int n;
char *a = (char *)&n;

n = 0x11223344;
printf("%02x, %02x, %02x, %02x\n",

a[0], a[1], a[2], a[3]);
}

Output on an Intel CPU:
44, 33, 22, 11

Output on a PowerPC:
11, 22, 33, 44

33

IP headers use big endian

February 3, 2020 © 2014-2020 Paul Krzyzanowski

Representing data: serialization

Need standard encoding to enable communication between
heterogeneous systems

• Serialization
– Convert data into a pointerless format: an array of bytes

• Examples
– XDR (eXternal Data Representation), used by ONC RPC
– JSON (JavaScript Object Notation)
– W3C XML Schema Language
– ASN.1 (ISO Abstract Syntax Notation)
– Google Protocol Buffers

February 3, 2020 © 2014-2020 Paul Krzyzanowski 34

Serializing data

Implicit typing
– only values are transmitted, not data types or parameter info
– e.g., ONC XDR (RFC 4506)

Explicit typing
– Type is transmitted with each value
– e.g., ISO’s ASN.1, XML, protocol buffers, JSON

35February 3, 2020 © 2014-2020 Paul Krzyzanowski

Marshaling vs. serialization – almost synonymous:

Serialization: converting an object into a sequence of bytes that can be sent over a
network

Marshaling: bundling parameters into a form that can be reconstructed (unmarshaled)
by another process. May include object ID or other state. Marshaling uses
serialization.

XML: eXtensible Markup Language
<ShoppingCart>

<Items>
<Item>

<ItemID> 00120 </ItemID>
<Item> Bear Claw Black Telescopic Back Scratcher </Item>
<Price> 5.99 </Price>

</Item>
<item>

<ItemID> 00121 </ItemID>
<Item> Scalp Massager </Item>
<Price> 5.95 </Price>

</Item>
</Items>

</ShoppingCart>

February 3, 2020 © 2014-2020 Paul Krzyzanowski 36

Benefits:
– Human-readable
– Human-editable
– Interleaves structure with text (data)

Problems:
– Verbose: transmit more data than needed
– Longer parsing time
– Data conversion always required for

numbers

JSON: JavaScript Object Notation

• Lightweight (relatively efficient) data interchange format
– Introduced as the “fat-free alternative to XML”
– Based on JavaScript

• Human writeable and readable

• Self-describing (explicitly typed)
• Language independent

• Easy to parse

• Currently converters for 50+ languages

• Includes support for RPC invocation via JSON-RPC

February 3, 2020 © 2014-2020 Paul Krzyzanowski 37

JSON Example

38

{"menu": {
"id": "file",
"value": "File",
"popup": {
"menuitem": [
{"value": "New", "onclick": "CreateNewDoc()"},
{"value": "Open", "onclick": "OpenDoc()"},
{"value": "Close", "onclick": "CloseDoc()"}

]
}

}}

from json.org/example.html

February 3, 2020 © 2014-2020 Paul Krzyzanowski

Google Protocol Buffers

• Efficient mechanism for serializing structured data
– Much simpler, smaller, and faster than XML

• Language independent

• Define messages
– Each message is a set of names and types

• Compile the messages to generate data access classes for
your language

• Used extensively within Google. Currently over 48,000
different message types defined.
– Used both for RPC and for persistent storage

February 3, 2020 © 2014-2020 Paul Krzyzanowski 39

Example (from the Developer Guide)

http://code.google.com/apis/protocolbuffers/docs/overview.html

message Person {
required string name = 1;
required int32 id = 2;
optional string email = 3;

enum PhoneType {
MOBILE = 0;
HOME = 1;
WORK = 2;

}

message PhoneNumber {
required string number = 1;
optional PhoneType type = 2 [default = HOME];

}

repeated PhoneNumber phone = 4;
}

February 3, 2020 © 2014-2020 Paul Krzyzanowski 40

Example (from the Developer Guide)

http://code.google.com/apis/protocolbuffers/docs/overview.html

Person person;

person.set_name("John Doe");

person.set_id(1234);

person.set_email("jdoe@example.com");

fstream output("myfile", ios::out | ios::binary);

person.SerializeToOstream(&output);

February 3, 2020 © 2014-2020 Paul Krzyzanowski 41

Efficiency example (from the Developer Guide)

• Binary encoded message: ~28 bytes long, 100-200 ns to parse

• XML version: ≥69 bytes, 5,000-10,000 ns to parse

• In general,
– 3-10x smaller data
– 20-100 times faster to marshal/unmarshal
– Easier to use programmatically

http://code.google.com/apis/protocolbuffers/docs/overview.html

<person>
<name>John Doe</name>
<email>jdoe@example.com</email>

</person>

person {
name: "John Doe"
email: "jdoe@example.com"

}

XML version Text (uncompiled) protocol buffer

February 3, 2020 © 2014-2020 Paul Krzyzanowski 42

The End

February 3, 2020 © 2014-2020 Paul Krzyzanowski 43

