
Distributed Systems
02r. Java RMI Programming Tutorial

Paul Krzyzanowski

TA: David Domingo

Rutgers University

Fall 2018

© 2014-2018 Paul Krzyzanowski September 20, 2018 1

Java RMI

RMI = Remote Method Invocation

Allows a method to be invoked that resides on a different
JVM (Java Virtual Machine):

– Either a remote machine

– Or same machine, different processes

• Each process runs on a different Java Virtual Machines (JVM)

• Different address space per process/JVM

RMI provides object-oriented RPC (Remote Procedure Calls)

© 2014-2018 Paul Krzyzanowski September 20, 2018 2

© 2014-2018 Paul Krzyzanowski

Participating processes

Client
– Process that is invoking a method on a remote object

Server
– Process that owns the remote object
– To the server, this is a local object

Object Registry (rmiregistry)
– Name server that associates objects with names
– A server registers an object with rmiregistry
– URL namespace

rmi://hostname:port/pathname
e.g.: rmi://crapper.pk.org:12345/MyServer

Port number

September 20, 2018 3

Classes & Interfaces needed for Java RMI

• Remote: for accessing remote methods

– Used for remote objects

• Serializable: for passing parameters to remote methods

– Used for parameters

• Also needed:

– RemoteException: network or RMI errors can occur

– UnicastRemoteObject: used to export a remote object reference or

obtain a stub for a remote object

– Naming: methods to interact with the registry

© 2014-2018 Paul Krzyzanowski September 20, 2018 4

Remote class

• Remote class (remote object)

– Instances can be used remotely

– Works like any other object locally

– In other address spaces, object is referenced with an object handle
• The handle identifies the location of the object

– If a remote object is passed as a parameter, its handle is passed

© 2014-2018 Paul Krzyzanowski September 20, 2018 5

© 2014-2018 Paul Krzyzanowski

Serializable interface

java.io.Serializable interface (serializable object)

– Allows an object to be represented as a sequence of bytes

– Allows instances of objects to be copied between address spaces
• Can be passed as a parameter or be a return value to a remote object
• Value of object is copied (pass by value)

– Any objects that may be passed as parameters should be defined
to implement the java.io.Serializable interface
• Good news: you rarely need to implement anything

– All core Java types already implement the interface
– For your classes, the interface will serialize each variable iteratively

September 20, 2018 6

Remote classes

Classes that will be accessed remotely have two parts:
1. interface definition

2. class definition

Remote interface
– This will be the basis for the creation of stub functions

– Must be public

– Must extend java.rmi.Remote

– Every method in the interface must declare that it throws
java.rmi.RemoteException

Remote class
– implements Remote interface

– extends java.rmi.server.UnicastRemoteObject

© 2014-2018 Paul Krzyzanowski September 20, 2018 7

© 2014-2018 Paul Krzyzanowski

Super-simple example program

• Client invokes a remote method with strings as parameter

• Server returns a string containing the reversed input
string and a message

September 20, 2018 8

Define the remote interface (SampleInterface.java)

© 2014-2018 Paul Krzyzanowski

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface SampleInterface extends Remote {
public String invert(String msg) throws RemoteException;

}

• Interface is public

• Extends the Remote interface

• Defines methods that will be accessed remotely

– We have just one method here: invert
• Each method must throw a RemoteException

– In case things go wrong in the remote method invocation

SampleInterface.java

September 20, 2018 9

Define the remote class (Sample.java)

© 2014-2018 Paul Krzyzanowski

import java.rmi.Remote;
import java.rmi.RemoteException;
import java.rmi.server.*;

public class Sample
extends UnicastRemoteObject
implements SampleInterface {

public Sample() throws RemoteException { }
public String invert(String m) throws RemoteException {

// return input message with characters reversed
return new StringBuffer(m).reverse().toString();

}
}

• Defines the implementation of the remote methods
• It implements the interface we defined
• It extends the java.rmi.server.UnicastRemoteObject class
– Defines a unicast remote object whose references are valid only

while the server process is alive.

September 20, 2018 10

Next…

• We now have:
– The remote interface definition: SampleInterface.java
– The server-side (remote) class: Sample.java

• Next, we’ll write the server: SampleServer.java
• Two parts:

1. Create an instance of the remote class
2. Register it with the name server (rmiregistry)

© 2014-2018 Paul Krzyzanowski September 20, 2018 11

Server code (SampleServer.java)

• Create the object

• Register it with the name server (rmiregisty)

• rmiregistry runs on the server
– The default port is 1099
– The name is a URL format and can be prefixed with a hostname

and port: “//localhost:1099/Server”

© 2014-2018 Paul Krzyzanowski

new Sample()

Naming.rebind("Sample”, new Sample())

September 20, 2018 12

Server code: part 1 (SampleServer.java)

© 2014-2018 Paul Krzyzanowski

import java.rmi.Naming;
import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;

public class SampleServer {
public static void main(String args[]) {

if (args.length != 1) {
System.err.println("usage: java SampleServer rmi_port");
System.exit(1);

}

September 20, 2018 13

Server code: part 2 (SampleServer.java)

© 2014-2018 Paul Krzyzanowski

try {
// first command-line arg: the port of the rmiregistry
int port = Integer.parseInt(args[0]);

// create the URL to contact the rmiregistry
String url = "//localhost:" + port + "/Sample";
System.out.println("binding " + url);

// register it with rmiregistry
Naming.rebind(url, new Sample());
// Naming.rebind("Sample", new Sample());
System.out.println("server " + url + " is running...");

}
catch (Exception e) {

System.out.println("Sample server failed:" +
e.getMessage());

}
}

}

September 20, 2018 14

Policy file

• When we run the server, we need to specify security
policies

• A security policy file specifies what permissions you grant
to the program

• This simple one grants all permissions

© 2014-2018 Paul Krzyzanowski

grant {
permission java.security.AllPermission;

};

September 20, 2018 15

The client

• The first two arguments will contain the host & port

• Look up the remote function via the name server

• This gives us a handle to the remote method

• Call the remote method for each argument

• We have to be prepared for exceptions

© 2014-2018 Paul Krzyzanowski

SampleInterface sample = (SampleInterface)Naming.lookup(url);

sample.invert(args[i]));

September 20, 2018 16

Client code: part 1 (SampleClient.java)

© 2014-2018 Paul Krzyzanowski

import java.rmi.*;

public class SampleClient {
public static void main(String args[]) {
try {
// basic argument count check
if (args.length < 3) {
System.err.println(
"usage: java SampleClient rmihost rmiport string... \n");

System.exit(1);
}

// args[0] contains the hostname, args[1] contains the port
int port = Integer.parseInt(args[1]);
String url = "//" + args[0] + ":" + port + "/Sample";
System.out.println("looking up " + url);

// look up the remote object named “Sample”
SampleInterface sample = (SampleInterface)Naming.lookup(url);

September 20, 2018 17

Client code: part 2 (SampleClient.java)

© 2014-2018 Paul Krzyzanowski

// args[2] onward are the strings we want to reverse
for (int i=2; i < args.length; ++i)

// call the remote method and print the return
System.out.println(sample.invert(args[i]));

} catch(Exception e) {
System.out.println("SampleClient exception: " + e);

}
}

}

September 20, 2018 18

Compile
• Compile the interface and classes:

javac SampleInterface.java Sample.java
javac SampleServer.java

• And the client…

javac SampleClient.java

(you can do it all on one command: javac *.java)

• Note – Java used to use a separate RPC compiler
– Since Java 1.5, Java supports the dynamic generation of stub classes at

runtime

– In the past, one had to use an RMI compiler, rmic
– If you want to, you can still use it but it’s not needed

© 2014-2018 Paul Krzyzanowski September 20, 2018 19

Run
• Start the object registry (in the background):

rmiregistry 12345 &
– An argument overrides the default port 1099

• Start the server (giving it the port of the rmi registry):
CLASSPATH=. (include the current directory in the classpath)
java -Djava.security.policy=policy SampleServer 12345

• Run the client:
java SampleClient svrname 12345 testing abcdefgh

– Where svrname is the name of the server host. For example,
java SampleClient localhost 12345 testing abcdefgh

– 12345 is the port number of the name server, rmiregistry, not the actual service!

• See the output:
gnitset
hgfedcba

September 20, 2018 © 2014-2018 Paul Krzyzanowski 20

RMI
A bit of the internals

© 2014-2018 Paul Krzyzanowski September 20, 2018 21

Interfaces

• Interfaces define behavior

• Classes define implementation

• RMI: two classes support the same interface
– client stub

– server implementation

September 20, 2018 © 2014-2018 Paul Krzyzanowski 22

© 2014-2018 Paul Krzyzanowski

Three-layer architecture

client program server program

stub function(s) skeleton
(server-stub)

remote reference layer remote reference layer

transport layer transport layer
marshal stream

September 20, 2018 23

Stub functions Application interaction. Marshaling & unmarshaling

Remote reference layer Handles the creation & management of remote objects. Deals with the
semantics of remote requests (how they behave).

Transport layer Setting up connections and sending/receiving data

© 2014-2018 Paul Krzyzanowski

Server - 1
• Server creates an instance of the server object

– extends UnicastRemoteObject
– TCP socket is bound to an arbitrary port number
– thread is created which listens for connections on that socket

• Server registers object
– RMI registry is an RMI server (accepts RMI calls)
– Hands the registry the client stub for that server object

• contains information needed to call back to the server
(hostname, port)

September 20, 2018 24

© 2014-2018 Paul Krzyzanowski

Client - 1
• Client obtains stub from registry

• Client issues a remote method invocation
– stub class creates a RemoteCall

• opens socket to the server on port specified in the stub

• sends RMI header information

– stub marshals arguments over the network connection
• uses methods on RemoteCall to obtain a subclass of ObjectOutputStream
• knows how to deal with objects that extend java.rmi.Remote

– serializes Java objects over socket

– stub calls RemoteCall.executeCall()
• causes the remote method invocation to take place

September 20, 2018 25

© 2014-2018 Paul Krzyzanowski

Server - 2

• Server accepts connection from client

• Creates a new thread to deal with the incoming request

• Reads header information
– creates RemoteCall to deal with unmarshaling RMI arguments

• Calls dispatch method of the server-side stub (skeleton)
– calls appropriate method on the object
– sends result to network connection via RemoteCall interface
– if server threw exception, that is marshaled instead of a return value

September 20, 2018 26

© 2014-2018 Paul Krzyzanowski

Client - 2

• The client unmarshals the return value of the RMI
– using RemoteCall

• value is returned from the stub back to the client code
– or an exception is thrown to the client if the return was an exception

September 20, 2018 27

The end

© 2014-2018 Paul Krzyzanowski September 20, 2018 28

