
Distributed Systems
02. Networking

Paul Krzyzanowski

Rutgers University

Spring 2020

1January 27, 2020 © 2014-2020 Paul Krzyzanowski

Inter-computer communication

• Without shared memory, computers need to communicate

January 27, 2020 © 2014-2020 Paul Krzyzanowski 2

Direct link

Direct links aren't practical – they don't scale

Connecting computers

Communication network
– Share the infrastructure
– Collision: when two nodes transmit at the same time, same channel

• Both signals get damaged
– Multiple access problem

• How do you coordinate multiple senders?

3

Network

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Modes of connection

Circuit-switching (virtual circuit)
– Dedicated path (route) – established at setup
– Guaranteed (fixed) bandwidth – routers commit to resources
– Typically fixed-length packets (cells) – each cell only needs a

virtual circuit ID
– Constant latency

Packet-switching (datagram)
– Shared connection; competition for use with others
– Data is broken into chunks called packets
– Each packet contains a destination address
– available bandwidth £ channel capacity
– Variable latency

4January 27, 2020 © 2014-2020 Paul Krzyzanowski

This is what IP uses

Packet switching

Random access
– Statistical multiplexing
– No timeslots
– Anyone can transmit when ready
– But be prepared for collisions or dropped packets

5January 27, 2020 © 2014-2020 Paul Krzyzanowski

Ethernet

• Packet-based protocol

• Originally designed for shared (bus-based) links

• Each endpoint has a unique ethernet address
– MAC address: 48-bit number

6January 27, 2020 © 2014-2020 Paul Krzyzanowski

Layering

Most popular model of guiding
(not specifying) protocol layers is

OSI reference model

Adopted and created by ISO

7 layers of protocols

7

OSI = Open Systems Interconnection
From the ISO = International Organization for Standardization

January 27, 2020 © 2014-2020 Paul Krzyzanowski

OSI Reference Model: Layer 1
Transmits and receives raw data to
communication medium

Does not care about contents

Media, voltage levels, speed,
connectors

Physical1
Examples: USB, Bluetooth,

1000BaseT, Wi-Fi

8

Deals with representing bits

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Data Link

OSI Reference Model: Layer 2
Detects and corrects errors

Organizes data into frames before
passing it down. Sequences
packets (if necessary)

Accepts acknowledgements from
immediate receiver

Physical1

2

Examples: Ethernet MAC, PPP

9January 27, 2020 © 2014-2020 Paul Krzyzanowski

Data Link

OSI Reference Model: Layer 2
An ethernet switch is an example of a device that works on layer 2

It forwards ethernet frames from one host to another as long as the
hosts are connected to the switch (switches may be cascaded)

This set of hosts and switches defines the local area network (LAN)

10

Physical1

2

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Network

Data Link

OSI Reference Model: Layer 3
Relay and route information to
destination

Manage journey of datagrams and
figure out intermediate hops
(if needed)

Physical1

2

3

Examples: IP, X.25

11January 27, 2020 © 2014-2020 Paul Krzyzanowski

Transport

Network

Data Link

OSI Reference Model: Layer 4
Provides an interface for end-to-
end (application-to-application)
communication: sends & receives
segments of data. Manages flow
control. May include end-to-end
reliability

Network interface is similar to a
mailbox

Physical1

2

3

4

Examples: TCP, UDP

12January 27, 2020 © 2014-2020 Paul Krzyzanowski

Session

Transport

Network

Data Link

OSI Reference Model: Layer 5
Services to coordinate dialogue
and manage data exchange

Software implemented switch

Manage multiple logical
connections

Keep track of who is talking:
establish & end communications

Physical1

2

3

4

5

Examples: HTTP 1.1, SSL

13

Deals with data streams

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Presentation

Session

Transport

Network

Data Link

OSI Reference Model: Layer 6
Data representation

Concerned with the meaning of
data bits

Convert between machine
representations

Physical1

2

3

4

5

6

Examples: XDR, ASN.1, MIME,
JSON, XML

14

Deals with objects

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Application

Presentation

Session

Transport

Network

Data Link

OSI Reference Model: Layer 7
Collection of application-specific
protocols

Physical1

2

3

4

5

6

7

Examples:
web (HTTP)
email (SMTP, POP, IMAP)
file transfer (FTP)
directory services (LDAP)

15

Deals with app-specific
protocols

January 27, 2020 © 2014-2020 Paul Krzyzanowski

A layer communicates with its counterpart

16

Application

Presentation

Session

Transport

Network

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical1

2

3

4

5

6

7

Logical View

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Local Area Network (LAN): Data Link Layer

17

Link-layer switch
(e.g., ethernet)

Access point,
also link-layer
(e.g., Wi-Fi)

Link-layer switches: create a physical network (e.g., Ethernet, Wi-Fi)

Hub:
– Device that acts as a central point for

LAN cables
– Take incoming data from one port &

send to all other ports

Switch
– Moves data from input to output port
– Analyzes packet to determine

destination port and makes a sends
data to that port

– Scales better than a hub – other
systems don’t see the traffic

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Ethernet service guarantees

• Each packet (frame) contains a CRC checksum
– Recipient will drop the received frame if it is bad

• No acknowledgement of packet delivery

• Unreliable, in-order delivery
– Packet loss possible

18January 27, 2020 © 2014-2020 Paul Krzyzanowski

Going beyond the LAN

• We want to communicate beyond the LAN
– WAN = Wide Area Network

• Network Layer
– Responsible for routing between LANs

• The Internet
– Evolved from ARPANET (1969)

– Internet = global network of networks based on the Internet
Protocol (IP) family of protocols

19January 27, 2020 © 2014-2020 Paul Krzyzanowski

Internet Protocol

A set of protocols designed to handle the interconnection of
many local and wide-area networks that together comprise
the Internet

IPv4 & IPv6: network layer
– Other IP-based protocols include TCP, UDP, RSVP, ICMP, etc.

– Relies on routing from one physical network to another

– IP is connectionless
No state needs to be saved at each router

– Survivable design: support multiple paths for data
… but packet delivery is not guaranteed!

20January 27, 2020 © 2014-2020 Paul Krzyzanowski

The Internet: Key Design Principles
1. Support interconnection of networks

– No changes needed to the underlying physical network
– IP is a logical network

2. Assume unreliable communication
– If a packet does not get to the destination, software on the receiver will have

to detect it and the sender will have to retransmit it

3. Routers connect networks
– Store & forward delivery

4. No global (centralized) control of the network

January 27, 2020 © 2014-2020 Paul Krzyzanowski 21

Routers tie LANs together into one Internet

22

Tier 3 ISP

Tier 2 ISP

Tier 1 ISP

Tier 1 ISP Tier 2 ISP

A packet may pass through many networks – within and between ISPs
January 27, 2020 © 2014-2020 Paul Krzyzanowski

IP addressing

• Each network endpoint has a unique IP address
– No relation to an ethernet address
– IPv4: 32-bit address
– IPv6: 128-bit address

• Data is broken into packets
– Each packet contains source & destination IP addresses

• IP gives us machine-to-machine communication

January 27, 2020 © 2014-2020 Paul Krzyzanowski 23

Transport Layer: UDP & TCP

January 27, 2020 © 2014-2020 Paul Krzyzanowski 24

Transport Layer

• We want to communicate between applications

• The transport layer gives us logical "channels" for
communication
– Processes can write to and receive from these channels

• Two transport layer protocols in IP are TCP & UDP
– A port number identifies a unique channel on each computer

January 27, 2020 © 2014-2020 Paul Krzyzanowski 25

IP transport layer protocols

IP gives us two transport-layer protocols for communication

– TCP: Transmission Control Protocol
• Connection-oriented service – operating system keeps state
• Full-duplex connection: both sides can send messages over the same link
• Reliable data transfer: the protocol handles retransmission
• In-order data transfer: the protocol keeps track of sequence numbers
• Flow control: receiver stops sender from sending too much data
• Congestion control: “plays nice” on the network – reduce transmission rate
• 20-byte header

– UDP: User Datagram Protocol
• Connectionless service: lightweight transport layer over IP
• Data may be lost
• Data may arrive out of sequence
• Checksum for corrupt data: operating system drops bad packets
• 8-byte header

26January 27, 2020 © 2014-2020 Paul Krzyzanowski

IP vs. OSI stack

30

Application

Transport
(TCP, UDP)

Network (IP)

Data Link

Physical

Application

Presentation

Session

Transport

Network

Data Link

Physical

Internet protocol stack OSI protocol stack

1

2

3

4

5

6

7

1

2

3

4

5

6

7

Middleware

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Protocol Encapsulation

At any layer
– The higher level protocol headers are just treated like data
– Lower level protocol headers can be ignored

Ethernet payloadEthernet header

C
R

C

IP payloadEthernet header

C
R

CIP
header

Ethernet header

C
R

C

TCP payloadIP
header

TCP
header

An ethernet switch or ethernet driver sees this:

A router or IP driver sees this:

A TCP driver sees this:

Ethernet header

C
R

C

TCP payloadIP
header

TCP
header

An application sees this:

31January 27, 2020 © 2014-2020 Paul Krzyzanowski

Programming for networking

January 27, 2020 © 2014-2020 Paul Krzyzanowski 32

Network API

• App developers need access to the network

• A Network Application Programming Interface (API)
provides this
– Core services provided by the operating system

• Operating System controls access to resources
– Libraries may handle the rest

33January 27, 2020 © 2014-2020 Paul Krzyzanowski

Programming: connection-oriented protocols

Reliable byte stream service (TCP)
– provides illusion of having a dedicated circuit
– messages guaranteed to arrive in-order
– application does not have to address each message

1. establish connection
2. [negotiate protocol]
3. exchange data
4. terminate connection

dial phone number
[decide on a language]
speak
hang up

analogous to phone call

34January 27, 2020 © 2014-2020 Paul Krzyzanowski

Programming: connectionless protocols

Datagram service (UDP)
– client is not positive whether message arrived at destination
– no state has to be maintained at client or server

- no call setup
- send/receive data

(each packet addressed)
- no termination

drop letter in mailbox
(each letter addressed)

analogous to mailbox

35January 27, 2020 © 2014-2020 Paul Krzyzanowski

Sockets

• Dominant API for transport layer connectivity

• Created at UC Berkeley for 4.2BSD Unix (1983)

• Design goals
– Communication between processes should not depend on whether

they are on the same machine
– Communication should be efficient
– Interface should be compatible with files
– Support different protocols and naming conventions

• Sockets is not just for the Internet Protocol family

36January 27, 2020 © 2014-2020 Paul Krzyzanowski

What is a socket?

Abstract object from which messages are sent and received
– Looks like a file descriptor

– Application can select particular style of communication
• Virtual circuit (connection-oriented), datagram (connectionless),

message-based, in-order delivery

– Unrelated processes should be able to locate communication
endpoints
• Sockets can have a name
• Name should be meaningful in the communications domain

– E.g., Address & port for IP communications

37January 27, 2020 © 2014-2020 Paul Krzyzanowski

Connection-Oriented (TCP) socket operations

38

Create a socket

Name the socket
(assign local address, port)

Connect to the other side

read / write byte streams

close the socket

Create a socket

Name the socket
(assign local address, port)

Set the socket for listening

Wait for and accept a
connection; get a socket for
the connection

close the socket

read / write byte streams

close the listening socket

Client
Server

socket

bind

connect

read/write

close

socket

bind

listen

accept

read/write

close

close

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Java provides shortcuts that combine calls

Example

January 27, 2020 © 2014-2020 Paul Krzyzanowski 39

Socket s = new Socket(“www.rutgers.edu”, 2211)

int s = socket(AF_INET, SOCK_STREAM, 0);

struct sockaddr_in myaddr; /* initialize address structure */
myaddr.sin_family = AF_INET;
myaddr.sin_addr.s_addr = htonl(INADDR_ANY);
myaddr.sin_port = htons(0);

bind(s, (struct sockaddr *)&myaddr, sizeof(myaddr));

/* look up the server's address */
struct hostent *hp; /* host information */
struct sockaddr_in servaddr; /* server address */

memset((char*)&servaddr, 0, sizeof(servaddr));
servaddr.sin_family = AF_INET;
servaddr.sin_port = htons(2211);
hp = gethostbyname(“www.rutgers.edu”);

if (connect(fd, (struct sockaddr *)&servaddr, sizeof(servaddr)) < 0) {
/* connect failed */

}

Java

C

Python Example

January 27, 2020 © 2014-2020 Paul Krzyzanowski 40

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(5)

while 1:
conn, addr = s.accept()
do work on socket conn
msg = conn.recv()

s.close

import socket

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
remote_addr = socket.gethostbyname(host)
s.connect(remote_addr, port)
s.sendall(message)
…

Note: try/except blocks are missing

Connectionless (UDP) socket operations

41

Create a socket

Name the socket
(assign local address, port)

Send a message

Receive a message

close the socket

Create a socket

Name the socket
(assign local address, port)

close the socket

Send a message

Receive a message

Client Server

socket

bind

sendto

recvfrom

close

socket

bind

recvfrom

sendto

close

January 27, 2020 © 2014-2020 Paul Krzyzanowski

The end

42January 27, 2020 © 2014-2020 Paul Krzyzanowski

