
Distributed Systems
01r. Sockets Programming Introduction

Paul Krzyzanowski
TAs : Shaleen Garg & Baber Khalid
Rutgers University
Spring 2020

1January 27, 2020 © 2014-2020 Paul Krzyzanowski

Machine vs. transport endpoints
• IP is a network layer protocol: packets address only the machine

– IP header identifies source IP address, destination IP address

• IP packet delivery is not guaranteed to be reliable or in-order

• Transport-level protocols on top of IP: TCP & UDP
– Allow application-to-application communication
– Port numbers: identify communication “channel” at each host

2

Process A Process B

port 1512 port 25

machine 192.168.1.5 machine 192.168.1.7

January 27, 2020 © 2014-2020 Paul Krzyzanowski

What is a socket?
Abstract object from which messages are sent and received

– Looks like a file descriptor to programs
– Provides a communication channel for applications

– Application can select particular style of communication
• Stream (connection-oriented) or datagram (connectionless)

– Unrelated processes need to locate communication endpoints
• Sockets have a name
• Name is meaningful in the communications domain

– For IP networking, name = { address & port number }

January 27, 2020 © 2014-2020 Paul Krzyzanowski 3

How are sockets used?

4

Client: web browser Server: web server

Send HTTP request message
to get a page

Receive HTTP request message

Process HTTP request

Send HTTP response message

Receive HTTP response message

Display a page

tim
e

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Connect to server

Disconnect from server (close)

Accept the connection

Close the connection

Connection-Oriented (TCP) socket operations

5

Create a socket

Name the socket
(assign local address, port)

Connect to the other side

read / write byte streams

close the socket

Create a socket

Name the socket
(assign local address, port)

Set the socket for listening

Wait for and accept a
connection; get a socket for
the connection

close the socket

read / write byte streams

close the listening socket

Client
Server

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Connectionless (UDP) socket operations

6

Create a socket

Name the socket
(assign local address, port)

Send a message

Receive a message

close the socket

Create a socket

Name the socket
(assign local address, port)

close the socket

Send a message

Receive a message

Client Server

January 27, 2020 © 2014-2020 Paul Krzyzanowski

POSIX system call interface

7

System call Function

socket Create a socket

bind Associate an address with a socket

listen Set the socket to listen for connections

accept Wait for incoming connections

connect Connect to a socket on the server

read/write,
sendto/recvfrom,
sendmsg/recvmsg

Exchange data

close/shutdown Close the connection

se
rv

er
cl

ie
nt

January 27, 2020 © 2014-2020 Paul Krzyzanowski

This is what the operating system gives up

Using sockets in Java

• java.net package
– Socket class

• Deals with sockets used for TCP/IP communication

– ServerSocket class
• Deals with sockets used for accepting connections

– DatagramSocket class
• Deals with datagram packets (UDP/IP)

• Both Socket and ServerSocket rely on the SocketImpl
class to actually implement sockets
– But you don’t have to think about that as a programmer

January 27, 2020 © 2014-2020 Paul Krzyzanowski 8

Create a socket for listening: server

Server:
– create, name, and listen are combined into one method
– ServerSocket constructor

Several other flavors (see API reference)

9

ServerSocket svc = new ServerSocket(80, 5);

port backlog

January 27, 2020 © 2014-2020 Paul Krzyzanowski

1. Server: create a socket for listening

10

Client: web browser Server: web server

Send HTTP request message
to get a page Receive HTTP request message

Process HTTP request

Send HTTP response message

Receive HTTP response message

Display a page

tim
e

Server Socket svc = new ServerSocket(80, 5);

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Server: wait for (accept) a connection

accept method of ServerSocket
– block until connection arrives
– return a Socket

11

ServerSocket svc = new ServerSocket(80, 5);
Socket req = svc.accept();

January 27, 2020 © 2014-2020 Paul Krzyzanowski

2. Server: wait for a connection (blocking)

12

Client: web browser Server: web server

Send HTTP request message
to get a page Receive HTTP request message

Process HTTP request

Send HTTP response message

Receive HTTP response message

Display a page

tim
e

Server Socket svc = new ServerSocket(80);

Socket req = svc.accept();

Block until an incoming connection comes in

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Client: create a socket

Client:
– create, name, and connect operations are combined into one

method
– Socket constructor

Several other flavors (see api reference)

13

host port

Socket s = new Socket(“www.rutgers.edu”, 2211);

January 27, 2020 © 2014-2020 Paul Krzyzanowski

3. Client: connect to server socket (blocking)

14

Client: web browser Server: web server

tim
e Send HTTP request message

to get a page
Receive HTTP request message

Process HTTP request

Send HTTP response message
Receive HTTP response message

Display a page

Server Socket svc = new ServerSocket(80, 5);

Blocks until connection is set up

Socket req = svc.accept(); Socket s = new Socket(“pk.org”, 80);

Receive connection request from client

January 27, 2020 © 2014-2020 Paul Krzyzanowski

3a. Connection accepted

15

Client: web browser Server: web server

Send HTTP request message
to get a page

Receive HTTP request message

Process HTTP request

Send HTTP response message
Receive HTTP response message

Display a page

tim
e

Server Socket svc = new ServerSocket(80, 5);

Socket s = new Socket(“pk.org”, 80);

Connection is established Connection is accepted

Socket req = svc.accept();

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Exchange data

Obtain InputStream and OutputStream from Socket
– Layer whatever you need on top of them

• e.g. DataInputStream, PrintStream, BufferedReader, …

16

Example:

client
DataInputStream in = new DataInputStream(s.getInputStream());
PrintStream out = new PrintStream(s.getOutputStream());

server
DataInputStream in = new BufferedReader(

new InputStreamReader(req.getInputStream()));
String line = in.readLine();
DataOutputStream out = new DataOutputStream(

req.getOutputStream());
out.writeBytes(mystring + ’\n’)

January 27, 2020 © 2014-2020 Paul Krzyzanowski

4. Perform I/O (read, write)

17

Client: web browser Server: web server

Send HTTP request message
to get a page

Receive HTTP request message

Process HTTP request

Send HTTP response message
Receive HTTP response message

Display a page

tim
e

Server Socket svc = new ServerSocket(80, 5);

Socket s = new Socket(“pk.org”, 80); Socket req = svc.accept();

InputStream s_in = s.getInputStream();
OutputStream s_out = s.getOutputStream();

InputStream r_in = req.getInputStream();
OutputStream r_out = req.getOutputStream();

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Close the sockets

Close input and output streams first, then the socket

18

client:

try {
out.close();
in.close();
s.close();

} catch (IOException e) {}

server:

try {
out.close();
in.close();
req.close(); // close connection socket
svc.close(); // close ServerSocket

} catch (IOException e) {}

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Programming with sockets:
Sample program

January 27, 2020 © 2014-2020 Paul Krzyzanowski 19

Sample Client-Server Program

To illustrate programming with TCP/IP sockets, we’ll write a
tiny client-server program:

Client:
1. Read a line of text from the user
2. Send it to the server; wait for a response (single line)
3. Print the response
Server
1. Wait for a connection from a client
2. Read a line of text
3. Return a response that contains the length of the string and the string

converted to uppercase
4. Exit

January 27, 2020 © 2014-2020 Paul Krzyzanowski 20

Sample Client-Server Program

We will then embellish this program to:
– Have a continuously-running server
– Allow a client to send multiple lines of text
– Make the server multi-threaded so it can handle concurrent

requests
– Specify a host on the command line

January 27, 2020 © 2014-2020 Paul Krzyzanowski 21

Classes for input/output

With Java, you’ll often layer different input/output stream
classes depending on what you want to do.

Here are some common ones:

January 27, 2020 © 2014-2020 Paul Krzyzanowski 22

Output
• OutputStream
• DataOutputStream
• PrintStream
• DataOutputStream

Input
• InputStream
• BufferedReader
• InputStreamReader

Handling output

January 27, 2020 © 2014-2020 Paul Krzyzanowski 23

OutputStream The basics – write a byte or a bunch of bytes

DataOutputStream Allows you to write Unicode (multibyte) characters,
booleans, doubles, floats, ints, etc.
Watch out if using this because the other side might
not be Java and might represent the data differently.
The two most useful things here are writeBytes(String
s), which writes a string out as a bunch of 1-byte
values and write(byte[] b, int off, int len), which writes
a sequence of bytes from a byte array.

PrintStream Allows you to use print and println to send characters.
Useful for line-oriented output.

FilterOutputStream Needed for PrintStream. On it’s own, just gives you
the same write capabilities you get with OutputStream

Handling input

January 27, 2020 © 2014-2020 Paul Krzyzanowski 24

InputStream The basics – read a byte or a bunch of bytes
BufferedReader Buffers input and parses lines. Allows you to read

data a line at a time via readLine(). You can also use
read(char [] cbuf, int off, int len) to read characters
into a portion of an array.

InputStreamReader You need this to use BufferedReader. It converts
bytes (that you’ll be sending over the network) to Java
characters.

Client: step 1
Read a line of text from the standard input (usually keyboard)
– We use readLine to read the text. For that, we need to use the

BufferedReader class on top of the InputStreamReader on top of the system
input stream (System.in)

January 27, 2020 © 2014-2020 Paul Krzyzanowski 25

String line;
BufferedReader userdata = new BufferedReader(new InputStreamReader(System.in));
line = userdata.readLine();

Test #1
Don’t hesitate to write tiny programs if you’re not 100% sure how
something works!

Notice that readLine() removes the terminating newline character from
a line
– If we want to send line-oriented text, we’ll need to suffix a newline (‘\n’) to the string

January 27, 2020 © 2014-2020 Paul Krzyzanowski 26

import java.io.*;

public class line {
public static void main(String args[]) throws Exception {

String line;

BufferedReader userdata = new BufferedReader(new InputStreamReader(System.in));
line = userdata.readLine();
System.out.println("got: \"" + line + '"');

}
}

Client: step 2
Establish a socket to the server, send the line, and get the result

– Create a socket.
– For now, we will connect to ourselves – the name “localhost” resolves to our local address.
– For now, we will hard-code a port number: 12345

Get input and output streams from the socket
– The methods getInputStream() and getOutputStream() return the basic streams for the socket
– Create a DataOutputStream for the socket so we can write a string as bytes
– Create a BufferedReader so we can read a line of results from the server

January 27, 2020 © 2014-2020 Paul Krzyzanowski 27

DataOutputStream toServer = new DataOutputStream(sock.getOutputStream());
BufferedReader fromServer = new BufferedReader(

new InputStreamReader(sock.getInputStream()));

Socket sock = new Socket("localhost", 12345); // create a socket and connect

Client: step 3
Send the line we read from the user and read the results

We’re done; print the result and close the socket

January 27, 2020 © 2014-2020 Paul Krzyzanowski 28

toServer.writeBytes(line + ‘\n’); // send the line we read from the user

String result = fromServer.readLine(); // read the response from the server

System.out.println(result);

sock.close();

Our client – version 1
But we can’t test it yet because we don’t have the server!

January 27, 2020 © 2014-2020 Paul Krzyzanowski 29

import java.io.*;
import java.net.*;

public class TCPClient {
public static void main(String args []) throws Exception {

String line; // user input
BufferedReader userdata = new BufferedReader(new InputStreamReader(System.in));

Socket sock = new Socket("localhost", 12345); // connect to localhost port 12345
DataOutputStream toServer = new DataOutputStream(sock.getOutputStream());
BufferedReader fromServer = new BufferedReader(

new InputStreamReader(sock.getInputStream()));

line = userdata.readLine(); // read a line from the user
toServer.writeBytes(line + '\n'); // send the line to the server
String result = fromServer.readLine(); // read a one-line result
System.out.println(result); // print it
sock.close(); // and we’re done

}
}

Server: step 1

Create a socket for listening
– This socket’s purpose is only to accept connections
– Java calls this a ServerSocket
– For now, we’ll use a hard-coded port: 12345

• If the port number is 0, the operating system will assign a port.
– The backlog is the maximum queue length for unserviced arriving

connections
• The backlog is missing or 0, a default backlog will be used

January 27, 2020 © 2014-2020 Paul Krzyzanowski 30

ServerSocket svc = new ServerSocket(12345, 5); // listen on port 12345

port backlog

Server: step 2

Wait for a connection
– This method will block until a connection comes in
– When a client connects to port 12345 on this machine, the accept()

method will return a new socket that is dedicated to communicating
to that specific client

January 27, 2020 © 2014-2020 Paul Krzyzanowski 31

Socket conn = svc.accept(); // get a connection

Test #2
• We can now test that a client can connect to the server

• Let’s write a tiny server that just waits for a connection and then exits

• Now run the client in another window
– As soon as the client starts, it will establish a connection and the server will exit

January 27, 2020 © 2014-2020 Paul Krzyzanowski 32

import java.net.*;

public class wait {
public static void main(String args[]) throws Exception {

ServerSocket svc = new ServerSocket(12345, 5); // listen on port 12345

Socket conn = svc.accept(); // get a connection
}

}

Server: step 3
Get input/output streams for the socket

– We will create a BufferedReader for the input stream so we can use
readLine to read data a line at a time

– We will create a DataOutputStream for the output stream so we can write
bytes.

January 27, 2020 © 2014-2020 Paul Krzyzanowski 33

// get the input/output streams for the socket
BufferedReader fromClient = new BufferedReader(

new InputStreamReader(conn.getInputStream()));
DataOutputStream toClient = new DataOutputStream(conn.getOutputStream());

Server: step 4
Read a line of data from the client (via fromClient)

Create the result

Write the result to the client (via writeBytes)

January 27, 2020 © 2014-2020 Paul Krzyzanowski 34

toClient.writeBytes(result); // send the result

String line = fromClient.readLine(); // read the data
System.out.println("got line \"" + line + "\""); // debugging! Let’s see what we got

// do the work
String result = line.length() + ": " + line.toUpperCase() + '\n’;

Server: step 5

Done! Close the socket
– Close the socket to the client to stop all communication with that

client
– Close the listening socket to disallow any more incoming

connections. Servers often run forever and therefore we often will
not do this.

January 27, 2020 © 2014-2020 Paul Krzyzanowski 35

System.out.println("server exiting\n"); // debugging message
conn.close(); // close connection
svc.close(); // stop listening

Our server – version 1

January 27, 2020 © 2014-2020 Paul Krzyzanowski 36

import java.io.*;
import java.net.*;

public class TCPServer {
public static void main(String args[]) throws Exception {

ServerSocket svc = new ServerSocket(12345, 5); // listen on port 12345

Socket conn = svc.accept(); // wait for a connection

// get the input/output streams for the socket
BufferedReader fromClient = new BufferedReader(

new InputStreamReader(conn.getInputStream()));
DataOutputStream toClient = new DataOutputStream(conn.getOutputStream());

String line = fromClient.readLine(); // read the data from the client
System.out.println("got line \"" + line + "\""); // show what we got

String result = line.length() + ": " + line.toUpperCase() + '\n'; // do the work

toClient.writeBytes(result); // send the result

System.out.println("server exiting\n");
conn.close(); // close connection
svc.close(); // stop listening

}
}

Test #3

• Compile TCPServer.java and TCPClient.java
javac *.java

• In one window, run
java TCPServer

• In another window, run
java TCPClient

• The client will wait for input. Type something
Hello

• It will respond with the server’s output:
5: HELLO

January 27, 2020 © 2014-2020 Paul Krzyzanowski 37

• We don’t want the server to exit
– Instead, have it wait for another connection

• Simple:
– Create the ServerSocket
– Then put everything else in a forever loop (for(;;))
– Never close the ServerSocket

• Now we can keep the server running and try running the
client multiple times

January 27, 2020 © 2014-2020 Paul Krzyzanowski 38

Version 2

Our server – version 2

January 27, 2020 © 2014-2020 Paul Krzyzanowski 39

import java.io.*;
import java.net.*;

public class TCPServer {
public static void main(String args[]) throws Exception {

ServerSocket svc = new ServerSocket(12345, 5); // listen on port 12345

for (;;) {
Socket conn = svc.accept(); // get a connection from a client

BufferedReader fromClient = new BufferedReader(
new InputStreamReader(conn.getInputStream()));

DataOutputStream toClient = new DataOutputStream(conn.getOutputStream());

String line = fromClient.readLine(); // read the data from the client
System.out.println("got line \"" + line + "\"");

String result = line.length() + ": " + line.toUpperCase() + '\n'; // do the work

toClient.writeBytes(result); // send the result

System.out.println("closing the connection\n");
conn.close(); // close connection

}
}

}

Version 3: let’s support multiple lines

Instead of having the server close the connection when a
single line of text is received, allow the client to read
multiple lines of text

– Each line is sent to the server; the response is read & printed

– An end of file from the user signals the end of user input
• This is typically control-D on Mac/Linux/Unix systems (see the stty

command)

January 27, 2020 © 2014-2020 Paul Krzyzanowski 40

Client – Version 3
We create a while loop to read lines of text

When readLine() returns null, that means there’s no more data

January 27, 2020 © 2014-2020 Paul Krzyzanowski 41

import java.io.*;
import java.net.*;

public class TCPClient {
public static void main(String argv[]) throws Exception {

String line; // user input
BufferedReader userdata = new BufferedReader(new InputStreamReader(System.in));

Socket sock = new Socket("localhost", 12345); // connect to localhost port 12345
DataOutputStream toServer = new DataOutputStream(sock.getOutputStream());
BufferedReader fromServer = new BufferedReader(

new InputStreamReader(sock.getInputStream()));

while ((line = userdata.readLine()) != null) { // read a line at a time
toServer.writeBytes(line + '\n'); // send the line to the server
String result = fromServer.readLine(); // read a one-line result
System.out.println(result); // print it

}
sock.close(); // we're done with the connection

}
}

Version 3 – server changes

We need to change the server too
– Read lines from a socket until there are no more
– When the client closes a socket and the server tries to read, it will

get an end-of-file: readline() will return a null
– A simple loop lets us iterate over the lines coming in from one client

January 27, 2020 © 2014-2020 Paul Krzyzanowski 42

while ((line = fromClient.readLine()) != null) { // while there's data from the client

// do work on the data

}
System.out.println("closing the connection\n");
conn.close(); // close connection

The server handles only one connection

1. Run the server in one window

2. Run the client in another window
– Type a bunch of text
– Each line produces a response from the server

3. Run the client again in yet another window
– Type a bunch of text
– Nothing happens. There’s no connection to the server!
– You have to exit the first client before this one can connect.

4. We need to make the server multi-threaded

January 27, 2020 © 2014-2020 Paul Krzyzanowski 43

Version 4 – add multi-threading to the server
We define the server to implement Runnable

– Define a constructor: called for each new thread

January 27, 2020 © 2014-2020 Paul Krzyzanowski 44

public class TCPServer implements Runnable {
Socket conn; // this is a per-thread copy of the client socket

// if we defined this static, then it would be shared among threads

TCPServer(Socket sock) {
this.conn = sock; // store the socket for the connection

}
}

Version 4 – add multi-threading to the server
The main function just gets connections and creates threads

January 27, 2020 © 2014-2020 Paul Krzyzanowski 45

public static void main(String args[]) throws Exception {
ServerSocket svc = new ServerSocket(12345, 5); // listen on port 12345

for (;;) {
Socket conn = svc.accept(); // get a connection from a client
System.out.println("got a new connection");

new Thread(new TCPServer(conn)).start();
}

} This creates the thread’s state
and calls the constructor

This creates the thread of
execution and calls run() in the
thread.
When run returns, the thread
exits.

Version 4 – add multi-threading to the server
The per-connection work is done in the thread

January 27, 2020 © 2014-2020 Paul Krzyzanowski 46

public void run() {
try {

BufferedReader fromClient = new BufferedReader(new InputStreamReader(conn.getInputStream()));
DataOutputStream toClient = new DataOutputStream(conn.getOutputStream());
String line;

while ((line = fromClient.readLine()) != null) { // while there's data from the client
System.out.println("got line \"" + line + "\"");

String result = line.length() + ": " + line.toUpperCase() + '\n'; // do the work

toClient.writeBytes(result); // send the result
}

System.out.println("closing the connection\n");
conn.close(); // close connection and exit the thread

} catch (IOException e) {
System.out.println(e);

}
}

Version 5
Allow the client to specify the server name on the command line

– If it’s missing, use “localhost”

January 27, 2020 © 2014-2020 Paul Krzyzanowski 47

public class TCPClient {
public static void main(String args[]) throws Exception {

String line; // user input
String server = "localhost"; // default server
BufferedReader userdata = new BufferedReader(new InputStreamReader(System.in));

if (args.length > 1) {
System.err.println("usage: java TCPClient server_name");
System.exit(1);

} else if (args.length == 1) {
server = args[0];
System.out.println("server = " + server);

}

Socket sock = new Socket(server, 12345); // connect to localhost port 12345

The end

48January 27, 2020 © 2014-2020 Paul Krzyzanowski

