
Distributed Systems
01. Introduction

Paul Krzyzanowski

Rutgers University

Spring 2020

1January 27, 2020 © 2014-2020 Paul Krzyzanowski

What is a Distributed System?

A collection of independent, autonomous hosts connected
through a communication network.

– No shared memory (must use the network)
– No shared clock
– No shared operating system (almost always)

2January 27, 2020 © 2014-2020 Paul Krzyzanowski

What is a Distributed System?

A distributed system is a collection of services accessed via
network-based interfaces

3January 27, 2020 © 2014-2020 Paul Krzyzanowski

Data
normalization

service

Data storage
service

Data analytics
service

Logging
service

Data storage
service

Sensor

Sensor

Web client
service

Client access
service

Caching
service

Single System Image

Collection of independent computers that appears as a
single system to the user(s)

– Independent = autonomous
– Single system: user not aware of distribution

4January 27, 2020 © 2014-2020 Paul Krzyzanowski

Classifying
parallel and distributed systems

5January 27, 2020 © 2014-2020 Paul Krzyzanowski

Flynn’s Taxonomy (1966)

SISD
– Traditional uniprocessor system

SIMD
– Array (vector) processor
– Examples:

• GPUs – Graphical Processing Units for video
• AVX: Intel’s Advanced Vector Extensions
• GPGPU (General Purpose GPU): AMD/ATI, NVIDIA

MISD
– Generally not used and doesn’t make sense
– Sometimes (rarely!) applied to classifying fault-tolerant redundant systems

MIMD
– Multiple computers, each with:

• program counter, program (instructions), data
– Parallel and distributed systems

Number of instruction streams and number of data streams

6January 27, 2020 © 2014-2020 Paul Krzyzanowski

Subclassifying MIMD

memory
– shared memory systems: multiprocessors
– no shared memory: networks of computers, multicomputers

interconnect
– bus
– switch

delay/bandwidth
– tightly coupled systems
– loosely coupled systems

7January 27, 2020 © 2014-2020 Paul Krzyzanowski

Multiprocessors & Multicomputers

Multiprocessors
– Shared memory
– Shared clock
– All-or-nothing failure

Multicomputers (networks of computers)
– No shared memory
– No shared clock
– Partial failures
– Inter-computer communication mechanism needed: the network

• Traffic much lower than memory access

8January 27, 2020 © 2014-2020 Paul Krzyzanowski

Why do we want distributed systems?

1. Scale
2. Collaboration

3. Reduced latency

4. Mobility

5. High availability & Fault tolerance
6. Incremental cost
7. Delegated infrastructure & operations

January 27, 2020 © 2014-2020 Paul Krzyzanowski 9

1. Scale

January 27, 2020 © 2014-2020 Paul Krzyzanowski 10

Scale: Increased Performance

Computers are getting faster

Moore's Law
– Prediction by Gordon Moore that the number of transistors in an

integrated circuit doubles approximately every two years.
– Commonly described as performance doubling every 18 months

because of faster transistors and more transistors per chip

Not a real law – just an observation from the 1970s

January 27, 2020 © 2014-2020 Paul Krzyzanowski 11

January 27, 2020 © 2014-2020 Paul Krzyzanowski 12

Scaling a single system has limits

Getting harder for technology to keep up with Moore's law

• More cores per chip
→ requires multithreaded programming

• There are limits to the die size and # of transistors
– Intel Xeon W-3175X CPU: 28 cores per chip ($2,999/chip!)

• 8 billion transistors, 255 w @ 3.1-4.3 GHz
– NVIDIA GeForce RTX 2080 Ti: 4,352 CUDA cores per chip

• Special purpose apps: Graphics rendering, neural networks

January 27, 2020 © 2014-2020 Paul Krzyzanowski 13

More performance

What if we need more performance than a single CPU?
• Combine them ⇒ multiprocessors

• But there are limits and the cost goes up quickly

Distributed systems allow us to achieve massive performance

January 27, 2020 © 2014-2020 Paul Krzyzanowski 14

Our computing needs exceed CPU advances
Movie rendering

– Toy Story (1995) – 117 computers; 45 mins - 30 hours to render a frame
• Pixar render farm – 2,000 systems with 24,000 cores

– Toy Story 4 (2019) – 60-160 hours to render a frame
– Disney/Pixar’s Coco (2017) – Up to 100 hours to render one frame
– How to Train a Dragon (2010) – 90 million CPU hours to render
– Big Hero 6 (2014) – average 83 hours/frame; 199 million CPU core hours
– Monsters University (2013) – an average of 29 hours per frame

• 2,000 computers with 12,500 cores – total time: over 100 million CPU hours

• Google
– Over 63,000 search queries per second on average
– Over 130 trillion pages indexed
– Uses hundreds of thousands of servers to do this

• Facebook
– Approximately 100M requests per second with 4B users

January 27, 2020 © 2014-2020 Paul Krzyzanowski 15

Example: Google
• In 1999, it took Google one month to crawl and build an index of

about 50 million pages

• In 2012, the same task was accomplished in less than one minute.

• 16% to 20% of queries that get asked every day have never been
asked before

• Every query has to travel on average 1,500 miles to a data center
and back to return the answer to the user

• A single Google query uses 1,000 computers in 0.2 seconds to
retrieve an answer

16

Source: http://www.internetlivestats.com/google-search-statistics/
January 27, 2020 © 2014-2020 Paul Krzyzanowski

2. Collaboration

January 27, 2020 © 2014-2020 Paul Krzyzanowski 17

Collaboration & Content

• Collaborative work & play

• Social connectivity

• Commerce

• News & media

January 27, 2020 © 2014-2020 Paul Krzyzanowski 18

Metcalfe’s Law
The value of a telecommunications network is proportional to
the square of the number of connected users of the system.

This makes networking interesting to us!

19January 27, 2020 © 2014-2020 Paul Krzyzanowski

3. Reduced latency

January 27, 2020 © 2014-2020 Paul Krzyzanowski 20

Reduced Latency

• Cache data close to where it is needed

• Caching vs. replication
– Replication: multiple copies of data for increased fault tolerance
– Caching: temporary copies of frequently accessed data closer to

where it’s needed

Some caching services:
Akamai, Cloudflare, Amazon Cloudfront,
Apache Ignite, Dropbox

January 27, 2020 © 2014-2020 Paul Krzyzanowski 21

4. Mobility

January 27, 2020 © 2014-2020 Paul Krzyzanowski 22

Mobility

3.5 billion smartphone users

Remote sensors
– Cars
– Traffic cameras
– Toll collection
– Shipping containers
– Vending machines

IoT = Internet of Things
– 2017: more IoT devices

than humans

January 27, 2020 © 2014-2020 Paul Krzyzanowski 23

5. High availability & Fault tolerance

January 27, 2020 © 2014-2020 Paul Krzyzanowski 24

High availability

Redundancy = replicated components
– Service can run even if some systems die

If P(any one system down) = 5%
P(two systems down at the same time) = 5%×5% = 0.25%

Uptime = 1 – downtime = 1 – 0.0025 = 99.75%

Reminder:
P(A and B) = P(A) × P(B)

January 27, 2020 © 2014-2020 Paul Krzyzanowski 25

High availability

No redundancy = dependence on all components
– Service cannot run if some components die

If we need all systems running to provide a service

P(two systems down) = 1 - P(A is up AND B is up)
= 1 - (1-5%) × (1-5%) = 1 - 0.95 × 0.95 = 9.75%

⇒ 39x greater than a single component failure!
Uptime = 1 – downtime = 1 – 0.0975 = 90.25%

With a large # of systems, P(any system down) approaches 100% !

January 27, 2020 © 2014-2020 Paul Krzyzanowski 26

Computing availability

Series system:
The system fails if ANY of its components fail

P(system failure) = 1 - P(system survival)
If Pi = P(component i fails) then for n components:

𝑃 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1 −1
2

3

1 − 𝑃2

Parallel system:
The system fails if ALL of its components fail

P(system failure) = P(component1 fails) × P(component1 fails) …

𝑃 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1
2

3

𝑃2

January 27, 2020 © 2014-2020 Paul Krzyzanowski 27

Availability requires fault tolerance

• Fault tolerance
– Identify & recover from component failures

• Recoverability
– Software can restart and function
– May involve restoring state

January 27, 2020 © 2014-2020 Paul Krzyzanowski 28

6. Incremental growth & cost

January 27, 2020 © 2014-2020 Paul Krzyzanowski 29

Incremental cost

Version 1 does not have to be the full system
– Add more servers & storage over time
– Scale also implies cost – you don’t need millions of $ for v1.0

• eBay
– Perl code on one hosted FreeBSD server – flat files or Berkeley DB

• Facebook
– Started on one rented server at $85/month

• Google
– Original storage in 1996: 10 4GB drives = 40 GB total
– 1998 hardware

• Sun Ultra II, 2 Intel dual-Pentium II servers, quad-processor IBM RS/6000
• ~ 475 GB of disks

January 27, 2020 © 2014-2020 Paul Krzyzanowski 30

7. Delegated infrastructure & operations

January 27, 2020 © 2014-2020 Paul Krzyzanowski 31

Delegated operations

• Offload responsibility
– Let someone else manage systems
– Use third-party services

• Speed deployment
– Don’t buy & configure your own systems
– Don’t build your own data center

• Modularize services on different systems
– Dedicated systems for storage, email, etc.

• Cloud, network attached storage

January 27, 2020 © 2014-2020 Paul Krzyzanowski 32

Transparency as a Design Goal

January 27, 2020 © 2014-2020 Paul Krzyzanowski 33

Transparency
High level: hide distribution from users
Low level: hide distribution from software

– Location transparency
Users don’t care where resources are

– Migration transparency
Resources move at will

– Replication transparency
Users cannot tell whether there are copies of resources

– Concurrency transparency
Users share resources transparently

– Parallelism transparency
Operations take place in parallel without user’s knowledge

34January 27, 2020 © 2014-2020 Paul Krzyzanowski

Why are distributed systems different
… and challenging?

January 27, 2020 © 2014-2020 Paul Krzyzanowski 35

Core issues in distributed systems design

1. Concurrency
2. Latency
3. Partial Failure

January 27, 2020 © 2014-2020 Paul Krzyzanowski 36

Concurrency

January 27, 2020 © 2014-2020 Paul Krzyzanowski 37

Concurrency

• Lots of requests may occur at the same time

• Need to deal with concurrent requests
– Need to ensure consistency of all data
– Understand critical sections & mutual exclusion
– Beware: mutual exclusion (locking) can affect performance

• Replication adds complexity
– All operations must appear to occur in the same order on all replicas

January 27, 2020 © 2014-2020 Paul Krzyzanowski 38

Latency

January 27, 2020 © 2014-2020 Paul Krzyzanowski 39

Latency

Network messages may take a long time to arrive
– Synchronous network model

• There is some upper bound, T, between when a node sends a message
and another node receives it

• Knowing T enables a node to distinguish between a node that has failed
and a node that is taking a long time to respond

– Partially synchronous network model
• There’s an upper bound for message communication but the

programmer doesn’t know it – it has to be discovered
• Protocols will operate correctly only if all messages are received within

some time, T
– Asynchronous network model

• Messages can take arbitrarily long to reach a peer node
• This is what we get from the Internet!

January 27, 2020 © 2014-2020 Paul Krzyzanowski 40

Latency

• Asynchronous networks can be a pain

• Messages may take an unpredictable amount of time
– We may think a message is lost but it’s really delayed
– May lead to retransmissions à duplicate messages
– May lead us to assume a service is dead when it isn’t
– May mess with our perception of time
– May cause messages to arrive in a different order

… or a different order on different systems

January 27, 2020 © 2014-2020 Paul Krzyzanowski 41

Latency
• Speed up data access via caching – temporary copies of data

• Keep data close to where it’s processed to maximize efficiency
– Memory vs. disk
– Local disk vs. remote server
– Remote memory vs. remote disk
– Cache coherence: cached data can become stale

• Underlying data can change à cache needs to be invalidated
• System using the cache may change the data à propagate results

– Write-through cache
– But updates take time à can lead to inconsistencies (incoherent views)

January 27, 2020 © 2014-2020 Paul Krzyzanowski 42

Partial Failure

January 27, 2020 © 2014-2020 Paul Krzyzanowski 43

You know you have a
distributed system when the
crash of a computer you’ve
never heard of stops you
from getting any work done.

– Leslie Lamport

January 27, 2020 © 2014-2020 Paul Krzyzanowski 44

Handling failure
Failure is a fact of life in distributed systems!

• In local systems, failure is usually total (all-or-nothing)

• In distributed systems, we get partial failure
– A component can fail while others continue to work
– Failure of a network link is indistinguishable from a remote server failure
– Send a request but don't get a response
– What happened?

• No global state
– There is no global state that can be examined to determine errors
– There is no agent that can determine which components failed and inform

everyone else

• Need to ensure the state of the entire system is consistent after a
failure

January 27, 2020 © 2014-2020 Paul Krzyzanowski 45

Handling failure

Need to deal with detection, recovery, and restart

Availability = fraction of time system is usable
– Achieve with redundancy
– But then consistency is an issue!

Reliability: data must not get lost
– Includes security

January 27, 2020 © 2014-2020 Paul Krzyzanowski 46

System Failure Types

• Fail-stop
– Failed component stops functioning

• Ideally, it may notify other components first
– Halting = stop without notice
– Detect failed components via timeouts

• But you can’t count on timeouts in asynchronous networks
– And what if the network isn’t reliable?

• Sometimes we guess

• Fail-restart
– Component stops but then restarts
– Danger: stale state

January 27, 2020 © 2014-2020 Paul Krzyzanowski 47

Failure types

• Omission
– Failure to send or receive messages

• Queue overflow in router, corrupted data, receive buffer overflow

• Timing
– Messages take longer than expected

• We may assume a system is dead when it isn't
– Unsynchronized clocks can alter process coordination

• Mutual exclusion, timestamped log entries

• Partition
– Network fragments into two or more sub-networks that cannot

communicate with each other

January 27, 2020 © 2014-2020 Paul Krzyzanowski 48

Network & System Failure Types

• Byzantine failures
– Instead of stopping, a component produces faulty data
– Due to bad hardware, software, network problems, or malicious

interference

Goal: avoid single points of failure

January 27, 2020 © 2014-2020 Paul Krzyzanowski 49

Redundancy

• We deal with failures by adding redundancy
– Replicated components

• But this means we need to keep the state of those
components replicated

January 27, 2020 © 2014-2020 Paul Krzyzanowski 50

State, replicas, and caches

• State
– Information about some component that cannot be reconstructed
– Network connection info, process memory, list of clients with open

files, lists of which clients finished their tasks

• Replicas
– Redundant copies of data → address fault tolerance

• Cache
– Local storage of frequently-accessed data to reduce latency

→ address latency

January 27, 2020 © 2014-2020 Paul Krzyzanowski 51

No global knowledge

• Nobody has the true global state of a system
– There is no global state that can be examined to determine errors
– There is no agent that can determine which components failed and

inform everyone else
– No shared memory

• A process knows its current state
– It may know the last reported state of other processes
– It may periodically report its state to others

No foolproof way to detect failure in all cases

January 27, 2020 © 2014-2020 Paul Krzyzanowski 52

Other design considerations

January 27, 2020 © 2014-2020 Paul Krzyzanowski 53

Handling Scale

• Need to be able to add and remove components

• Impacts failure handling
– If failed components are removed, the system should still work
– If replacements are brought in, the system should integrate them

January 27, 2020 © 2014-2020 Paul Krzyzanowski 54

Security

• The environment
– Public networks, remotely-managed services, 3rd party services

• Some issues
– Malicious interference, bad user input, impersonation of users &

services
– Protocol attacks, input validation attacks, time-based attacks,

replay attacks

• Rely on authentication, cryptography (hashes, encryption)
… and good programming!

• Users also want convenience
– Single sign-on
– Controlled access to services

January 27, 2020 © 2014-2020 Paul Krzyzanowski 55

Other design considerations

• Algorithms & environment
– Distributable vs. centralized algorithms
– Programming languages
– APIs and frameworks

January 27, 2020 © 2014-2020 Paul Krzyzanowski 56

Main themes in distributed systems

• Availability & fault tolerance
– Fraction of time that the system is functioning
– Dead systems, dead processes, dead communication links, lost messages

• Scalability
– Things are easy on a small scale
– But on a large scale

• Geographic latency (multiple data centers), administration, dealing with many
thousands of systems

• Latency & asynchronous processes
– Processes run asynchronously: concurrency
– Some messages may take longer to arrive than others

• Security
– Authentication, authorization, encryption

57January 27, 2020 © 2014-2020 Paul Krzyzanowski

Key approaches in distributed systems

• Divide & conquer
– Break up data sets (sharding) and have each system work on a small part
– Merging results is usually the easy & efficient part

• Replication
– For high availability, caching, and sharing data
– Challenge: keep replicas consistent even if systems go down and come up

• Quorum/consensus
– Enable a group to reach agreement

58January 27, 2020 © 2014-2020 Paul Krzyzanowski

Service Models (Application Architectures)

59January 27, 2020 © 2014-2020 Paul Krzyzanowski

Centralized model

• No networking

• Traditional time-sharing system

• Single workstation/PC or direct connection of multiple
terminals to a computer

• One or several CPUs

• Not easily scalable

• Limiting factor: number of CPUs in system
– Contention for same resources (memory, network, devices)

60January 27, 2020 © 2014-2020 Paul Krzyzanowski

Client-Server model

• Clients send requests to servers

• A server is a system that runs a service

• The server is always on and processes requests from
clients

• Clients do not communicate with other clients
• Examples

– FTP, web, email

January 27, 2020 © 2014-2020 Paul Krzyzanowski 61

Layered architectures

• Break functionality into multiple layers

• Each layer handles a specific abstraction
– Hides implementation details and specifics of hardware, OS,

network abstractions, data encoding, …

62

Hardware

Operating System

Middleware

Applications

Includes layering for
file systems, networking, devices, memory

Includes naming, security, persistence,
notifications, agreement, remote procedures,
data encoding, …

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Tiered architectures

• Tiered (multi-tier) architectures
– Distributed systems analogy to a layered architecture

• Each tier (layer)
– Runs as a network service
– Is accessed by surrounding layers

• The basic client-server architecture is a two-tier model
– Clients: typically responsible for user interaction
– Servers: responsible for back-end services (data access, printing, …)

January 27, 2020 © 2014-2020 Paul Krzyzanowski 63

Multi-tier example

64

client middle tier

User interface
Data presentation
& validation

• Queuing requests
• Coordinating a

transaction among
multiple servers

• Managing connections
• Formatting/converting

data

back end

• Database system
• Legacy software

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Multi-tier example

65

client web server

object
store

application
server

database

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Multi-tier example

66

cl
ie

nt

w
eb

 s
er

ve
r object

store

ap
pl

ic
at

io
n

se
rv

er

database

Some tiers may be transparent to the application
fir

ew
al

l

fir
ew

al
l

lo
ad

ba

la
nc

er

ca
ch

e

January 27, 2020 © 2014-2020 Paul Krzyzanowski

Peer-to-Peer (P2P) Model
• No reliance on servers

• Machines (peers) communicate with
each other

• Goals
– Robustness

• Expect that some systems may be down

– Self-scalability: the system can handle
greater workloads as more peers are
added

• Examples
– BitTorrent, Skype

clients servers

peers

January 27, 2020 © 2014-2020 Paul Krzyzanowski 67

Hybrid model

• Many peer-to-peer architectures still rely on a server
– Look up, track users
– Track content
– Coordinate access

• But traffic-intensive workloads are delegated to peers

Images from: http://clipart-library.com/laptop-cliparts.html

January 27, 2020 © 2014-2020 Paul Krzyzanowski 68

Processor pool model
• Collection of CPUs that can be assigned processes on demand

• Similar to hybrid model
– Coordinator dispatches work requests to available processors

• Render farms, big data processing, machine learning

69January 27, 2020 © 2014-2020 Paul Krzyzanowski

Cloud Computing

Resources are provided as a network (Internet) service

– Software as a Service (SaaS)
Remotely hosted software: email, productivity, games, …
• Salesforce.com, Google Apps, Microsoft Office 365

– Platform as a Service (PaaS)
Execution runtimes, databases, web servers, development environments, …
• Google App Engine, AWS Elastic Beanstalk

– Infrastructure as a Service (IaaS)
Compute + storage + networking: VMs, storage servers, load balancers
• Microsoft Azure, Google Compute Engine, Amazon Web Services

– Storage
Remote file storage
• Dropbox, Box, Google Drive, OneDrive, …

70January 27, 2020 © 2014-2020 Paul Krzyzanowski

The end

71January 27, 2020 © 2014-2020 Paul Krzyzanowski

