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What is a Distributed System?

A collection of independent, autonomous hosts connected 
through a communication network.

– No shared memory (must use the network)
– No shared clock
– No shared operating system (almost always)
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What is a Distributed System?
A distributed system is a collection of services accessed via 
network-based interfaces
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Single System Image
Collection of independent computers that appears as a 
single system to the user(s)

– Independent = autonomous
– Single system: user not aware of distribution
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Classifying
parallel and distributed systems
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Flynn’s Taxonomy (1966)

SISD
– Traditional uniprocessor system

SIMD
– Array (vector) processor
– Examples:

• GPUs – Graphical Processing Units for video
• AVX: Intel’s Advanced Vector Extensions
• GPGPU (General Purpose GPU): AMD/ATI, NVIDIA

MISD
– Generally not used and doesn’t make sense
– Sometimes (rarely!) applied to classifying fault-tolerant redundant systems

MIMD
– Multiple computers, each with:

• program counter, program (instructions), data
– Parallel and distributed systems

Number of instruction streams and number of data streams
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Subclassifying MIMD

memory
– shared memory systems: multiprocessors
– no shared memory: networks of computers, multicomputers

interconnect
– bus
– switch

delay/bandwidth
– tightly coupled systems
– loosely coupled systems
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Multiprocessors & Multicomputers

Multiprocessors
– Shared memory
– Shared clock
– All-or-nothing failure

Multicomputers (networks of computers)
– No shared memory
– No shared clock
– Partial failures
– Inter-computer communication mechanism needed: the network

• Traffic much lower than memory access
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Why do we want distributed systems?

1. Scale
2. Collaboration

3. Reduced latency
4. Mobility
5. High availability & Fault tolerance
6. Incremental cost
7. Delegated infrastructure & operations
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1. Scale
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Scale: Increased Performance

Computers are getting faster
Moore's Law

– Prediction by Gordon Moore that the number of transistors in an 
integrated circuit doubles approximately every two years.

– Commonly described as performance doubling every 18 months 
because of faster transistors and more transistors per chip

Not a real law – just an observation from the 1970s
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Scaling a single system has limits

Getting harder for technology to keep up with Moore's law
• More cores per chip

→ requires multithreaded programming
• There are limits to the die size and # of transistors

– Intel Xeon W-3175X CPU: 28 cores per chip ($2,999/chip!)
• 8 billion transistors, 255 w @ 3.1-4.3 GHz

– NVIDIA GeForce RTX 2080 Ti: 4,352 CUDA cores per chip
• Special purpose apps: Graphics rendering, neural networks
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More performance

What if we need more performance than a single CPU?
• Combine them⇒multiprocessors

• But there are limits and the cost goes up quickly

Distributed systems allow us to achieve massive performance

January 27, 2020 © 2014-2020 Paul Krzyzanowski 14

14

Our computing needs exceed CPU advances
Movie rendering

– Toy Story (1995) – 117 computers; 45 mins - 30 hours to render a frame
• Pixar render farm – 2,000 systems with 24,000 cores

– Toy Story 4 (2019) – 60-160 hours to render a frame
– Disney/Pixar’s Coco (2017) – Up to 100 hours to render one frame
– How to Train a Dragon (2010) – 90 million CPU hours to render
– Big Hero 6 (2014) – average 83 hours/frame; 199 million CPU core hours
– Monsters University (2013) – an average of 29 hours per frame

• 2,000 computers with 12,500 cores – total time: over 100 million CPU hours

• Google
– Over 63,000 search queries per second on average
– Over 130 trillion pages indexed
– Uses hundreds of thousands of servers to do this

• Facebook
– Approximately 100M requests per second with 4B users
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Example: Google
• In 1999, it took Google one month to crawl and build an index of 

about 50 million pages 

• In 2012, the same task was accomplished in less than one minute.

• 16% to 20% of queries that get asked every day have never been 
asked before

• Every query has to travel on average 1,500 miles to a data center 
and back to return the answer to the user

• A single Google query uses 1,000 computers in 0.2 seconds to 
retrieve an answer

16

Source: http://www.internetlivestats.com/google-search-statistics/
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2. Collaboration
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Collaboration & Content

• Collaborative work & play
• Social connectivity

• Commerce
• News & media
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Metcalfe’s Law

The value of a telecommunications network is proportional to 
the square of the number of connected users of the system.

This makes networking interesting to us!
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3. Reduced latency
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Reduced Latency
• Cache data close to where it is needed
• Caching vs. replication

– Replication: multiple copies of data for increased fault tolerance
– Caching: temporary copies of frequently accessed data closer to 

where it’s needed

Some caching services:
Akamai, Cloudflare, Amazon Cloudfront,
Apache Ignite, Dropbox
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4. Mobility
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Mobility

3.5 billion smartphone users
Remote sensors
– Cars
– Traffic cameras
– Toll collection
– Shipping containers
– Vending machines

IoT = Internet of Things
– 2017: more IoT devices

than humans
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5. High availability & Fault tolerance
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High availability

Redundancy = replicated components
– Service can run even if some systems die

If P(any one system down) = 5%
P(two systems down at the same time) = 5%×5% = 0.25%

Uptime = 1 – downtime = 1 – 0.0025 = 99.75%

Reminder:
P(A and B) = P(A) × P(B)
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High availability

No redundancy = dependence on all components
– Service cannot run if some components die

If we need all systems running to provide a service

P(two systems down) = 1 - P( A is up AND B is up )
= 1 - (1-5%) × (1-5%) = 1 - 0.95 × 0.95 =  9.75% 

⇒ 39x greater than a single component failure!
Uptime = 1 – downtime = 1 – 0.0975 = 90.25% 

With a large # of systems, P(any system down) approaches 100% !
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Computing availability
Series system:
The system fails if ANY of its components fail

P(system failure) = 1 - P(system survival)
If Pi = P(component i fails) then for n components:

𝑃 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1 −1
2

3

1 − 𝑃2

Parallel system:
The system fails if ALL of its components fail

P(system failure) = P(component1 fails) × P(component1 fails)  …

𝑃 𝑠𝑦𝑠𝑡𝑒𝑚 𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1
2

3

𝑃2
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Availability requires fault tolerance
• Fault tolerance

– Identify & recover from component failures

• Recoverability
– Software can restart and function
– May involve restoring state
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6. Incremental growth & cost
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Incremental cost

Version 1 does not have to be the full system
– Add more servers & storage over time
– Scale also implies cost – you don’t need millions of $ for v1.0

• eBay
– Perl code on one hosted FreeBSD server – flat files or Berkeley DB 

• Facebook
– Started on one rented server at $85/month

• Google
– Original storage in 1996: 10 4GB drives = 40 GB total
– 1998 hardware

• Sun Ultra II, 2 Intel dual-Pentium II servers, quad-processor IBM RS/6000
• ~ 475 GB of disks
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7. Delegated infrastructure & operations
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Delegated operations

• Offload responsibility
– Let someone else manage systems
– Use third-party services

• Speed deployment
– Don’t buy & configure your own systems
– Don’t build your own data center

• Modularize services on different systems
– Dedicated systems for storage, email, etc.

• Cloud, network attached storage

January 27, 2020 © 2014-2020 Paul Krzyzanowski 32

32

Transparency as a Design Goal
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Transparency
High level: hide distribution from users
Low level: hide distribution from software

– Location transparency
Users don’t care where resources are

– Migration transparency
Resources move at will

– Replication transparency
Users cannot tell whether there are copies of resources

– Concurrency transparency
Users share resources transparently

– Parallelism transparency
Operations take place in parallel without user’s knowledge
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Why are distributed systems different
… and challenging?
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Core issues in distributed systems design

1. Concurrency
2. Latency
3. Partial Failure

January 27, 2020 © 2014-2020 Paul Krzyzanowski 36

36



CS 417 27 January 2020

Paul Krzyzanowski 7

Concurrency
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Concurrency

• Lots of requests may occur at the same time

• Need to deal with concurrent requests
– Need to ensure consistency of all data
– Understand critical sections & mutual exclusion
– Beware: mutual exclusion (locking) can affect performance

• Replication adds complexity
– All operations must appear to occur in the same order on all replicas
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Latency
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Latency
Network messages may take a long time to arrive

– Synchronous network model
• There is some upper bound, T,  between when a node sends a message 

and another node receives it
• Knowing T enables a node to distinguish between a node that has failed 

and a node that is taking a long time to respond
– Partially synchronous network model

• There’s an upper bound for message communication but the 
programmer doesn’t know it – it has to be discovered

• Protocols will operate correctly only if all messages are received within 
some time, T

– Asynchronous network model
• Messages can take arbitrarily long to reach a peer node
• This is what we get from the Internet!
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Latency

• Asynchronous networks can be a pain
• Messages may take an unpredictable amount of time

– We may think a message is lost but it’s really delayed
– May lead to retransmissions à duplicate messages
– May lead us to assume a service is dead when it isn’t 
– May mess with our perception of time
– May cause messages to arrive in a different order

… or a different order on different systems
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Latency
• Speed up data access via caching – temporary copies of data

• Keep data close to where it’s processed to maximize efficiency
– Memory vs. disk
– Local disk vs. remote server
– Remote memory vs. remote disk
– Cache coherence: cached data can become stale

• Underlying data can change à cache needs to be invalidated
• System using the cache may change the data à propagate results

– Write-through cache

– But updates take time à can lead to inconsistencies (incoherent views)
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Partial Failure
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You know you have a 
distributed system when the 
crash of a computer you’ve 
never heard of stops you 
from getting any work done.

– Leslie Lamport
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Handling failure
Failure is a fact of life in distributed systems!

• In local systems, failure is usually total (all-or-nothing)

• In distributed systems, we get partial failure
– A component can fail while others continue to work
– Failure of a network link is indistinguishable from a remote server failure
– Send a request but don't get a response
– What happened?

• No global state
– There is no global state that can be examined to determine errors
– There is no agent that can determine which components failed and inform 

everyone else

• Need to ensure the state of the entire system is consistent after a 
failure
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Handling failure
Need to deal with detection, recovery, and restart

Availability = fraction of time system is usable
– Achieve with redundancy
– But then consistency is an issue!

Reliability: data must not get lost
– Includes security
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System Failure Types

• Fail-stop
– Failed component stops functioning

• Ideally, it may notify other components first
– Halting = stop without notice
– Detect failed components via timeouts

• But you can’t count on timeouts in asynchronous networks
– And what if the network isn’t reliable?

• Sometimes we guess

• Fail-restart
– Component stops but then restarts
– Danger: stale state
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Failure types

• Omission
– Failure to send or receive messages

• Queue overflow in router, corrupted data, receive buffer overflow

• Timing
– Messages take longer than expected

• We may assume a system is dead when it isn't 
– Unsynchronized clocks can alter process coordination

• Mutual exclusion, timestamped log entries

• Partition
– Network fragments into two or more sub-networks that cannot 

communicate with each other
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Network & System Failure Types

• Byzantine failures
– Instead of stopping, a component produces faulty data
– Due to bad hardware, software, network problems, or malicious 

interference

Goal: avoid single points of failure
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Redundancy

• We deal with failures by adding redundancy
– Replicated components

• But this means we need to keep the state of those 
components replicated
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State, replicas, and caches
• State

– Information about some component that cannot be reconstructed
– Network connection info, process memory, list of clients with open 

files, lists of which clients finished their tasks

• Replicas
– Redundant copies of data → address fault tolerance

• Cache
– Local storage of frequently-accessed data to reduce latency

→ address latency
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No global knowledge
• Nobody has the true global state of a system

– There is no global state that can be examined to determine errors
– There is no agent that can determine which components failed and 

inform everyone else
– No shared memory

• A process knows its current state
– It may know the last reported state of other processes
– It may periodically report its state to others

No foolproof way to detect failure in all cases

January 27, 2020 © 2014-2020 Paul Krzyzanowski 52

52

Other design considerations
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Handling Scale

• Need to be able to add and remove components
• Impacts failure handling

– If failed components are removed, the system should still work
– If replacements are brought in, the system should integrate them
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Security

• The environment
– Public networks, remotely-managed services, 3rd party services

• Some issues
– Malicious interference, bad user input, impersonation of users & 

services
– Protocol attacks, input validation attacks, time-based attacks, 

replay attacks

• Rely on authentication, cryptography (hashes, encryption)
… and good programming!

• Users also want convenience
– Single sign-on
– Controlled access to services
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Other design considerations

• Algorithms & environment
– Distributable vs. centralized algorithms
– Programming languages
– APIs and frameworks
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Main themes in distributed systems
• Availability & fault tolerance

– Fraction of time that the system is functioning
– Dead systems, dead processes, dead communication links, lost messages

• Scalability
– Things are easy on a small scale
– But on a large scale

• Geographic latency (multiple data centers), administration, dealing with many 
thousands of systems

• Latency & asynchronous processes
– Processes run asynchronously: concurrency
– Some messages may take longer to arrive than others

• Security
– Authentication, authorization, encryption
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Key approaches in distributed systems
• Divide & conquer

– Break up data sets (sharding) and have each system work on a small part
– Merging results is usually the easy & efficient part

• Replication
– For high availability, caching, and sharing data
– Challenge: keep replicas consistent even if systems go down and come up

• Quorum/consensus
– Enable a group to reach agreement
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Service Models (Application Architectures)
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Centralized model

• No networking

• Traditional time-sharing system

• Single workstation/PC or direct connection of multiple 
terminals to a computer

• One or several CPUs

• Not easily scalable

• Limiting factor: number of CPUs in system
– Contention for same resources (memory, network, devices)
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Client-Server model

• Clients send requests to servers
• A server is a system that runs a service

• The server is always on and processes requests from 
clients

• Clients do not communicate with other clients
• Examples

– FTP, web, email 
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Layered architectures

• Break functionality into multiple layers
• Each layer handles a specific abstraction

– Hides implementation details and specifics of hardware, OS, 
network abstractions, data encoding, …

62

Hardware

Operating System

Middleware

Applications

Includes layering for
file systems, networking, devices, memory

Includes naming, security, persistence,
notifications, agreement, remote procedures,
data encoding, …
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Tiered architectures
• Tiered (multi-tier) architectures 

– Distributed systems analogy to a layered architecture

• Each tier (layer)
– Runs as a network service
– Is accessed by surrounding layers

• The basic client-server architecture is a two-tier model
– Clients: typically responsible for user interaction
– Servers: responsible for back-end services (data access, printing, …)
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Multi-tier example
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client middle tier

User interface
Data presentation
& validation

• Queuing requests
• Coordinating a 

transaction among 
multiple servers

• Managing connections
• Formatting/converting 

data

back end

• Database system
• Legacy software
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Multi-tier example
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client web server

object 
store

application
server

database
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Multi-tier example
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Peer-to-Peer (P2P) Model
• No reliance on servers

• Machines (peers) communicate with 
each other

• Goals
– Robustness

• Expect that some systems may be down

– Self-scalability: the system can handle 
greater workloads as more peers are 
added

• Examples
– BitTorrent, Skype

clients servers

peers
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Hybrid model

• Many peer-to-peer architectures still rely on a server
– Look up, track users
– Track content
– Coordinate access

• But traffic-intensive workloads are delegated to peers

Images from: http://clipart-library.com/laptop-cliparts.html
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Processor pool model
• Collection of CPUs that can be assigned processes on demand

• Similar to hybrid model
– Coordinator dispatches work requests to available processors

• Render farms, big data processing, machine learning
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Cloud Computing
Resources are provided as a network (Internet) service

– Software as a Service (SaaS)
Remotely hosted software: email, productivity, games, …
• Salesforce.com, Google Apps, Microsoft Office 365

– Platform as a Service (PaaS)
Execution runtimes, databases, web servers, development environments, …
• Google App Engine, AWS Elastic Beanstalk

– Infrastructure as a Service (IaaS)
Compute + storage + networking: VMs, storage servers, load balancers
• Microsoft Azure, Google Compute Engine, Amazon Web Services

– Storage
Remote file storage
• Dropbox, Box, Google Drive, OneDrive, …
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The end
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