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Devices 

• Block devices: disk drives, flash memory 

– Addressable blocks (suitable for caching) 

• Network devices: Ethernet & wireless networks 

– Packet based I/O 

• Character devices: mice, keyboard, audio, scanner 

– Byte streams 

– Including Bus controllers 

• Interface with communication busses 
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Devices as files 

• Character & block devices appear in the file system name space 

• Use open/close/read/write operations 

• Extra controls may be needed for device-specific functions 

(ioctl) 



Interacting with devices 

• Devices have command registers 

– Transmit, receive, data ready, read, write, seek, status 

• Memory mapped I/O 

– Map device registers into memory 

– Memory protection now protects device access 

– Standard memory load/store instructions can be used to interact 

with the device 
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How do you move data to/from the device? 

• Programmed I/O (PIO) 

– Use memory-mapped device registers 

– The processor is responsible for transferring data to/from the 

device by writing/reading these registers 

• DMA 

– Allow the device to access system memory directly 
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When is the device ready? 

• Need to know 

– When the device is ready to accept a new command 

– When data is received from a device 

 

• Polling 

– Wait for device to be ready 

– To avoid busy loop, check each clock interrupt 

• Interrupts from the device 

– Interrupt when device has data or when the device is done 

transmitting 

– No checking needed – but context switch may be costly 
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Device driver 

Software in the kernel that interfaces with devices 

System calls 

Device 

Device Driver 

Common interface 

Custom interface 



Device System 

Contains: 

– Buffer cache & I/O scheduler 

– Generic device driver code 

– Drivers for specific devices (including bus drivers) 

 

 



Device Drivers 

• Device Drivers 

– Implement mechanism, not policy 

– Mechanism: ways to interact with the device 

– Policy: who can access and control the device 

 

• Device drivers may be compiled into the kernel or loaded 

as modules 

 



Kernel Modules 

• Chunks of code that can be loaded & unloaded into the kernel on 

demand 

• Dynamic loader 

– Links unresolved symbols to the symbol table of the running kernel 

• Linux  

– insmod to add a module and rmmod commands to remove a module 

– module_init 

• Each module has a function that the kernel calls to initialize the module and register each 

facility that the module offers 

– delete_module: system call calls a module_exit function in the module 

– Reference counting 

• Kernel keeps a use count for each device in use 

• get(): increment – called from open when opening the device file 

• put(): decrement – called from close  

– You can remove only when the use count is 0 

 



Device Driver Initialization 

• All modules have to register themselves 

– How else would the kernel know what they do? 

 

• Device drivers register themselves as devices 

 

– Character drivers 
Initialize & register a cdev structure & implement file_operations 

– Block drivers 
Initialize & register a gendisk structure & implement block_device_operations 

– Network drivers 
Initialize & register a net_device structure & implement net_device_ops 

 



Block Devices 

• Structured access to the underlying hardware 

• Something that can host a file system 

• Supports only block-oriented I/O 

• Convert the user abstraction of the disk being an array of 

bytes to the underlying structure 

• Examples 

– USB memory keys, disks, CDs, DVDs 

 



Buffer Cache 

• Pool of kernel memory to hold frequently used blocks from block 

devices 

• Minimizes the number of I/O requests that require device I/O 

• Allows applications to read/write from/to the device as a stream of 

bytes or arbitrary-sized blocks 

User I/O 

requests 

Buffer cache Device Block 

I/O requests 



Blocking & Non-blocking I/O 

• Buffer cache interacts with the underlying block devices 

• Options to the user at the system call level 

• Blocking I/O: 

– User process waits until I/O is complete 

• Non-blocking I/O: 

– Schedule output but don’t wait for it to complete 

– Poll if data is ready for input (e.g., select system call) 



Asynchronous I/O 

• Request returns immediately but the I/O is scheduled and the 

process will be signaled when it is ready 

– Differs from non-blocking because the I/O will be performed in its entirety 

… just later 

• If the system crashes or is shut off before modified blocks are written, 

that data is lost 

• To minimize data loss 

– Force periodic flushes 

• On BSD: a user process, update, calls sync to flush data 

• On Linux: kupdated, a kernel update daemon does the work 

– Or force synchronous writes (but performance suffers!) 



Buffered vs. Unbuffered I/O 

Buffered I/O: 

– Kernel copies the write data to a block of memory (buffer): 

• Allow the process to write bytes to the buffer and continue processing: 

buffer does not need to be written to the disk … yet 

– Read operation: 

• When the device is ready, the kernel places the data in the buffer 

 

• Why is buffering important? 

– Deals with device burstiness (leaky bucket) 

– Allows user data to be modified without affecting the data that’s 

read or written to the device 

– Caching (for block devices) 

– Alignment (for block devices) 

 

 

 



File systems 

• Determine how data is organized on a block device 

 

• Software driver, not a device driver 

– Maps low-level to high-level data structures 

 

• More on this later… 



Network Devices 

• Packet, not stream, oriented device 

• Not visible in the file system 

• Accessible through the socket interface 

• May be hardware or software devices 

– Software is agnostic 

– E.g., ethernet or loopback devices 

 

• More on this later… 



Character Devices 

• Unstructured access to underlying hardware 

• Different types (anything that’s not a block or network device): 

– Real streams of characters: Terminal multiplexor, serial port 

– Frame buffer: Has its own buffer management policies and custom interfaces 

– Sound devices, I2C controllers, etc. 

• Higher-level software provides line-oriented I/O 

– tty driver that interacts with the character driver 

– Raw vs. cooked I/O: line buffering, eof, erase, kill character processing 

• Character access to block devices (disks, USB memory keys, …) 

– Character interface is the unstructured (raw) interface 

– I/O does NOT go through buffer cache 

– Directly between the device and buffers in user’s address space 

– I/O must be a multiple of the disk’s block size 

 



All objects get a common file interface 

All devices support generic “file” operations: 

 
struct file_operations { 

 struct module *owner; 

 loff_t (*llseek) (struct file *, loff_t, int); 

 ssize_t (*read) (struct file *, char __user *, size_t, loff_t *); 

 ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *); 

 ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t); 

 ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t); 

 int (*readdir) (struct file *, void *, filldir_t); 

 unsigned int (*poll) (struct file *, struct poll_table_struct *); 

 int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long); 

 int (*mmap) (struct file *, struct vm_area_struct *); 

 int (*open) (struct inode *, struct file *); 

 int (*flush) (struct file *, fl_owner_t id); 

 int (*release) (struct inode *, struct file *); 

 int (*fsync) (struct file *, struct dentry *, int datasync); 

 int (*fasync) (int, struct file *, int); 

 int (*flock) (struct file *, int, struct file_lock *); 

 ... 

} 



Device driver entry points 

• Each device driver provides a fixed set of entry points 

– Define whether the device has a block or character interface 

– Block device interfaces appear in a block device table 

– Character device interfaces: character device table 

 

• Identifying a device in the kernel 
– Major number 

• Identifies device: index into the device table (block or char) 

– Minor number 

• Interpreted within the device driver 

• Instance of a specific device 

• E.g., Major = SATA disk driver, Minor = specific disk 

 

• Unique device ID = { type, major #, minor # } 
 



How do you locate devices? 

• Explicit namespace (MS-DOS approach) 

– C:, D:, LPT1:, COM1:, etc. 

 

• Big idea! 

– Use the file system interface as an abstract interface for both file 

and device I/O 

– Device: file with no contents but with metadata: 

• Device file, type of device, major & minor numbers 

– Devices are traditionally located in /dev 

– Created by the mknod system call (or mknod command) 



Device names: Windows 

• Windows NT architecture (XP, 2000, Vista, Win 7, …) 

– When a device driver is loaded 

• It is registered by name with the Object Manager 

– Names have a hierarchical namespace maintained by Object Manager 

 \Device\Serial0 

 \Device\CDRom0 

– (Linux sort of did this with devfs and devtmpfs) 

 

• Win32 API requires MS-DOS names 

– C:, D:, LPT1:, COM1:, etc. 

– These names are in the \?? Directory in the Object Manager’s namespace 

– Visible to Win32 programs 

– Symbolic links to the Windows NT device names 



Linux: Creating devices in /dev 

• Static devices (mknod) 

• udev – kernel device manager 

– user-level process 

kernel events udev 

mknod 

rm 

scripts 

netlink socket 

Device: initialized 

Device: removed 



Character device entry points 

Character (and raw block) devices include these entry points: 

 

open: open the device 

close: close the device 

ioctl: do an i/o control operation 

mmap: provide user programs with direct access to device memory 

read: do an input operation 

reset: reinitialize the device 

select: poll the device for I/O readiness 

stop: stop output on the device 

write: do an output operation 



Block device entry points 

Block devices include these entry points: 

 

open:  prepare for I/O 

Called for each open system call on a block device (e.g., on 

mount) 

strategy:  schedule I/O to read/write blocks 

Called by the buffer cache. The kernel makes bread() and 

bwrite() requests to the buffer cache. If the block isn't there then 

it contacts the device. 

close:  called after the final client using the device terminates 

psize:  get partition size 



Kernel execution contexts  

• Interrupt context 

– Unable to block because there’s no process to reschedule 

nothing to put to sleep and nothing to wake up 

• User context 

– Invoked by a user thread in synchronous function 

– May block on a semaphore, I/O, or copying to user memory 

• E.g., block on a file read invoked by the read system call 

– (Linux) Driver can access global variable context 

• Pointer to struct task_struct: tells driver who invoked the call 

• Kernel context 

– Kernel threads scheduled by kernel scheduler 

(just like any process) 

– Not related to any user threads 

– May block on a semaphore, I/O, or copying to user memory 

 

 



Interrupt Handler 

• Device drivers register themselves with the interrupt handler 

– Hooks registered at initialization: call code when an event happens 

• Operations of the interrupt hander 

– Save all registers 

– Update interrupt statistics: counts & timers 

– Call interrupt service routine in driver with the appropriate unit number (ID 

of device that generated the interrupt) 

– Restore registers 

– Return from interrupt 

• The driver itself does not have to deal with saving/restoring registers 



Handling interrupts quickly 

• Processing results of an interrupt may take time 

• We want interrupt handlers to finish quickly 

– Don’t keep interrupts blocked 



Delegation: top half → bottom half 

• Split interrupt handling into two parts: 

– Top half (interrupt handler) 

• Part that’s registered with request_irq and is called whenever an interrupt 

is detected. 

• Saves data in a buffer/queue, schedules bottom half, exits 

– Bottom half (work queue – kernel thread) 

• Scheduled by top half for later execution 

• Interrupts enabled 

• This is where there real work is done 

• Linux 2.6+ provides tasklets & work queues for dispatching bottom halves 

• Bottom halves are handled in a kernel context 

– Work queues are handled by kernel threads 

– One thread per processor (events/0, events/1) 

 



I/O Queues 

• When I/O request is received  
– Request is placed on a per-device queue for processing 

• Device Status Table 

– List of devices and the current status of the device 

– Each device has an I/O queue attached to it 

Device: keyboard 

Status: idle 

Device: disk 1 

Status: idle 

Device: disk 2 

Status: busy 

… 

Op:read 

Block: 35192 

Length: 8192 

Address: 0x8fe70211 

Op:write 

Block: 1204 

Length: 4096 

Address: 0x8770122d8 

Device status table 

I/O queue 



I/O Queues 

• Primary means of communication between top & bottom 

halves 

• I/O queues are shared among asynchronous functions 

– Access to them must be synchronized (critical sections) 

 



I/O Scheduling for Block Devices (disks) 



Shortest Seek Time First (SSTF) 

• Know: head position 

• Schedule the next I/O that is closest to the 

current head position 

 

• Analogous to shortest job first scheduling 

• Distant cylinders may get starved 

(or experience extra-long latency) current position 

This gets picked first 



Elevator Algorithms 

• Elevator algorithm (SCAN) 

– Know: head position & direction 

– Schedule pending I/O in the sequence of the 

current direction 

– When the head reaches the end, switch the 

direction 

• LOOK 
– When there are no more blocks to read/write in the 

current direction, switch direction 

• Circular SCAN (C-SCAN) 
– Like SCAN, but: 

when you reach the end of the disk, seek to the 

beginning without servicing I/O 

– Provides more uniform wait time 

• C-LOOK 
– Like C-SCAN but seek to the lowest track with 

scheduled I/O 

current position 

High cylinder # 

Low cylinder # 



Scheduling I/O: Linux options 

• Completely Fair Queuing (CFQ) 

– default scheduler 

– distribute I/O equally among all per-process I/O queues – fair per process 

• Requests sorted with each queue 

• CFQ services queues round robin (grabbing four requests per queue). 

– Synchronous requests 

• Go to per-process queues 

• Time slices allocated per queue 

– Asynchronous requests 

• Batched into queues by priority levels 

• Deadline 

– Service requests using C-SCAN 

– Each request has a deadline – If a deadline is threatened, skip to that request 

– Helps with real-time performance 

– Gives priority to real-time processes. Otherwise, it’s fair 



Scheduling I/O: Linux options 

• NOOP 

– Simple FIFO queue - minimal CPU overhead 

– Assumes that the block device is intelligent 

• Anticipatory 

– introduce a delay before dispatching I/O to try to aggregate and/or reorder requests 

to improve locality and reduce disk seek. 

– After issuing a request, wait (even if there’s work to be done) 

– If a request for nearby blocks occurs, issue it. 

– If no request, then C-SCAN 

– Fair 

– No support for real time 

– May result in higher I/O latency 

– Works surprisingly well in benchmarks!! 



Smarter Disks 

• Disks are smarter than in the past 

– E.g.: WD Caviar Black drives: dual processors, 64 MB cache 

• Logical Block Addressing (LBA) 

– Versus Cylinder, Head, Sector 

• Automatic bad block mapping (can mess up algorithms!) 
– Leave spare sectors on a track for remapping 

• Native Command Queuing (SATA & SCSI) 

– Allow drive to queue and re-prioritize disk requests 

– Queue up to 256 commands with SCSI 

• Cached data 

– Volatile memory; improves read time 

• Read-ahead caching for sequential I/O 

• Hybrid Hard Drives (HHD) 

– NAND Flash used as a cache 



Solid State Disks 

• NAND Flash 

– NOR Flash: random access bytes; suitable for execution; lower density 

– NAND Flash: block access 

• No seek latency 

• Asynchronous random I/O is efficient 

– Sequential I/O less so 

• Writes are less efficient: erase-on-write needed 

• Limited re-writes 

– Wear leveling becomes important (~ 100K-1M program/erase cycles) 

 



Back to drivers 



Frameworks 

• Most drivers are not individual character or block drivers 

– Implemented under a framework for a device type 

– Goal: create a set of standard interfaces 

– e.g., ALSA core, TTY serial, SCSI core, framebuffer devices 

• Define common parts for the same kinds of devices 

– Still seen as normal devices to users 

– Each framework defines a set of operations that the device must 

implement 

• e.g., framebuffer operations, ALSA audio operations 

• Framework provides a common interface 

– ioctl numbering for custom functions, semantics, etc. 



Example of frameworks 

System call interface 

Character 

driver 

ALSA 

core 

Framebuffer 

core 

TTY 

core 
Block Layer 

ALSA 

driver 

Framebuffer 

driver 
TTY 

driver 

serial 

core 

Block 

driver 

SCSI 

core 

libata 

 

USB 

storage 

 

SATA 

driver 

 

serial 

driver 



Example: Framebuffer 

• Must implement functions defined in struct fb_ops 

– These are framebuffer-specific operations 

– xxx_open(), xxx_read(), xxx_write(), xxx_release(), 

xxx_checkvar(), xxx_setpar(), xxx_setcolreg(), xxx_blank(), 

xxx_pan_display(), xxx_fillrect(), xxx_copyarea(), 

xxx_imageblit(), xxx_cursor(), xxx_rotate(), xxx_sync(), 

xxx_get_caps(), etc. 

• Also must: 

– allocate an fb_info structure with framebuffer_alloc() 

– set the ->fbops field to the operation structure 

– register the framebuffer device with register_framebuffer() 



Linux 2.6 Unified device/driver model 

• Goal: unify the relationship between: 

  devices, drivers, and buses 

• Bus driver 

– Interacts with each communication bus that supports devices (USB, 

PCI, SPI, MMC, I2C, etc.) 

– Responsible for: 

• Registering bus type 

• Registering adapter/interface drivers (USB controllers, SPI controllers, 

etc.): devices capable of detecting & providing access to devices 

connected to the bus 

• Allow registration of device drivers (USB, I2C, SPI devices) 

• Match device drivers against devices 

 



Example 

USB core 

USB adapter driver 1 
(USB host controller driver) 

USB device driver 1 USB device driver 2 

Computer system 

USB bus 

Device 1 Device 2 

Register a bus 

(usb_hcd) 

Register a device 

(usb_driver) 

USB 
controller 



Unified driver example 

• USB driver is loaded & registered as a USB device driver 

• At boot time 

– Bus driver registers itself to the USB bus infrastructure: I’m a USB device driver 

• When the bus detects a device 

– Bus driver notifies the generic USB bus infrastructure 

– The bus infrastructure knows which driver is capable of handling the device 

• Generic USB bus infrastructure calls probe() in that device driver, which: 

– Initializes device, maps memory, registers interrupt handlers 

– Registers the device to the proper kernel framework (e.g., network infrastructure) 

• Model is recursive: 

– PCI controller detects a USB controller, which detects an I2C adapter, which detects 

an I2C thermometer 



The End 
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