
Operating Systems Design

10. Devices

Paul Krzyzanowski

pxk@cs.rutgers.edu

3/21/2011 1© 2011 Paul Krzyzanowski 



Categories of devices

• Block devices (can hold a file system)

• Network (sockets)

• Character devices (everything else)

• Devices as files:

– Character & block devices appear in the file system name space

– Use open/close/read/write operations

– Extra controls may be needed for device-specific functions (ioctl)

3/21/2011 2© 2011 Paul Krzyzanowski 



Device driver

Software in the kernel that interfaces with devices

System calls

Device

Device Driver

Common interface

Custom interface

3/21/2011 3© 2011 Paul Krzyzanowski 



Device System

Contains:

– Buffer cache & I/O scheduler

– Generic device driver code

– Drivers for specific devices (including bus drivers)

3/21/2011 4© 2011 Paul Krzyzanowski 



Device Drivers

• Device Drivers

– Implement mechanism, not policy

– Mechanism: ways to interact with the device

– Policy: who can access and control the device

• Device drivers may be compiled into the kernel or loaded 

as modules

3/21/2011 5© 2011 Paul Krzyzanowski 



Kernel Modules

• Chunks of code that can be loaded & unloaded into the kernel on 

demand

• Dynamic loader

– Links unresolved symbols to the symbol table of the running kernel

• Linux 

– insmod to add a module and rmmod commands to remove a module

– module_init

• Each module has a function that the kernel calls to initialize the module and register 

each facility that the module offers

– delete_module: system call calls a module_exit function in the module

– Reference counting

• Kernel keeps a use count for each device in use

• get(): increment – called from open when opening the device file

• put(): decrement – called from close

– You can remove only when the use count is 0

3/21/2011 6© 2011 Paul Krzyzanowski 



Device Driver Initialization

• All modules have to register themselves

– How else would the kernel know what they do?

• Device drivers register themselves as devices

– Character drivers
Initialize & register a cdev structure & implement file_operations

– Block drivers
Initialize & register a gendisk structure & implement block_device_operations

– Network drivers
Initialize & register a net_device structure & implement net_device_ops

3/21/2011 7© 2011 Paul Krzyzanowski 



Block Devices

• Structured access to the underlying hardware

• Something that can host a file system

• Supports only block-oriented I/O

• Convert the user abstraction of the disk being an array of 

bytes to the underlying structure

• Examples

– USB memory keys, disks, CDs, DVDs

3/21/2011 8© 2011 Paul Krzyzanowski 



Buffer Cache

• Pool of kernel memory to hold frequently used blocks from block 

devices

• Minimizes the number of I/O requests that require device I/O

• Allows applications to read/write from/to the device as a stream of 

bytes or arbitrary-sized blocks

User I/O 

requests

Buffer cache Device Block 

I/O requests

3/21/2011 9© 2011 Paul Krzyzanowski 



Blocking & Non-blocking I/O

• Buffer cache deals with the device level

• Options at the system call level

• Blocking I/O:

– user process waits until I/O is complete

• Non-blocking I/O:

– Schedule output but don’t wait for it to complete

– Poll if data is ready for input (e.g., select system call)

3/21/2011 10© 2011 Paul Krzyzanowski 



Asynchronous I/O

• Request returns immediately but the I/O is scheduled and the 

process will be signaled when it is ready

– Differs from non-blocking because the I/O will be performed in its 

entirety … just later

• If the system crashes or is shut off before modified blocks are 

written, that data is lost

• To minimize data loss

– Force periodic flushes

• On BSD: a user process, update, calls sync to flush data

• On Linux: kupdated, a kernel update daemon does the work

– Or force synchronous writes (but performance suffers!)

3/21/2011 11© 2011 Paul Krzyzanowski 



Buffered vs. Unbuffered I/O

Buffered I/O:

– Kernel copies the write data to a block of memory (buffer):

• Allow the process to write bytes to the buffer and continue 

processing: buffer does not need to be written to the disk … yet

– Read operation:

• When the device is ready, the kernel places the data in the buffer

• Why is buffering important?

– Deals with device burstiness (leaky bucket)

– Allows user data to be modified without affecting the data that’s 

read or written to the device

– Caching (for block devices)

– Alignment (for block devices)

3/21/2011 12© 2011 Paul Krzyzanowski 



File systems

• Determine how data is organized on a block device

• NOT a device driver

• Software driver

– Maps low-level to high-level data structures

• More on this later…

3/21/2011 13© 2011 Paul Krzyzanowski 



Network Devices

• Packet, not stream, oriented device

• Not visible in the file system

• Accessible through the socket interface

• May be hardware or software devices

– Software is agnostic

– E.g., ethernet or loopback devices

• More on this later…

3/21/2011 14© 2011 Paul Krzyzanowski 



Character Devices

• Unstructured access to underlying hardware

• Different types (anything that’s not a block or network device):

– Real streams of characters: Terminal multiplexor, serial port

– Frame buffer: Has its own buffer management policies and custom interfaces

– Sound devices, I2C controllers, etc.

• Higher-level software provides line-oriented I/O

– tty driver that interacts with the character driver

– Raw vs. cooked I/O: line buffering, eof, erase, kill character processing

• Character access to block devices (disks, USB memory keys, …)

– Character interface is the unstructured (raw) interface

– I/O does NOT go through buffer cache

– Directly between the device and buffers in user’s address space

– I/O must be a multiple of the disk’s block size

3/21/2011 15© 2011 Paul Krzyzanowski 



All objects get a common file interface

All devices support generic “file” operations:

struct file_operations {

struct module *owner;

loff_t (*llseek) (struct file *, loff_t, int);

ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);

ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);

ssize_t (*aio_read) (struct kiocb *, const struct iovec *, unsigned long, loff_t);

ssize_t (*aio_write) (struct kiocb *, const struct iovec *, unsigned long, loff_t);

int (*readdir) (struct file *, void *, filldir_t);

unsigned int (*poll) (struct file *, struct poll_table_struct *);

int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);

int (*mmap) (struct file *, struct vm_area_struct *);

int (*open) (struct inode *, struct file *);

int (*flush) (struct file *, fl_owner_t id);

int (*release) (struct inode *, struct file *);

int (*fsync) (struct file *, struct dentry *, int datasync);

int (*fasync) (int, struct file *, int);

int (*flock) (struct file *, int, struct file_lock *);

...

}

3/21/2011 16© 2011 Paul Krzyzanowski 



Device driver entry points

• Each device driver provides a fixed set of entry points

– Define whether the device has a block or character interface

– Block device interfaces appear in a block device table

– Character device interfaces: character device table

• Identifying a device in the kernel

– Major number

• Identifies device: index into the device table (block or char)

– Minor number

• Interpreted within the device driver

• Instance of a specific device

• E.g., Major = SATA disk driver, Minor = specific disk

• Unique device ID = { type, major #, minor # }

3/21/2011 17© 2011 Paul Krzyzanowski 



How do you locate devices?

• Explicit namespace (MS-DOS approach)

– C:, D:, LPT1:, COM1:, etc.

• Big idea!

– Use the file system interface as an abstract interface for both file 

and device I/O

– Device: file with no contents but with metadata:

• Device file, type of device, major & minor numbers

– Devices are traditionally located in /dev

– Created by the mknod system call (or mknod command)

3/21/2011 18© 2011 Paul Krzyzanowski 



Device names: Windows

• Windows NT architecture (XP, 2000, Vista, Win 7, …)

– When a device driver is loaded

• It is registered by name with the Object Manager

– Names have a hierarchical namespace maintained by Object Manager

\Device\Serial0

\Device\CDRom0

– (Linux sort of did this with devfs and devtmpfs)

• Win32 API requires MS-DOS names

– C:, D:, LPT1:, COM1:, etc.

– These names are in the \?? Directory in the Object Manager’s namespace

– Visible to Win32 programs

– Symbolic links to the Windows NT device names

3/21/2011 19© 2011 Paul Krzyzanowski 



Linux: Creating devices in /dev

• Static devices (mknod)

• udev – kernel device manager

– user-level process

kernel events udev

mknod

rm

scripts

netlink socket

Device: initialized

Device: removed

3/21/2011 20© 2011 Paul Krzyzanowski 



Character device entry points

Character (and raw block) devices include these entry points:

open: open the device

close: close the device

ioctl: do an I/O control operation

mmap: map the device offset to a memory location

read: do an input operation

reset: reinitialize the device

select: poll the device for I/O readiness

stop: stop output on the device

write: do an output operation

3/21/2011 21© 2011 Paul Krzyzanowski 



Block device entry points

Block devices include these entry points:

open: prepare for I/O

Called for each open system call on a block device (e.g. on 

mount)

strategy: schedule I/O to read/write blocks

Called by the buffer cache. The kernel makes bread() and 

bwrite() requests to the buffer cache. If the block isn't there then 

it contacts the device.

close: called after the final client using the device terminates

psize: get partition size

3/21/2011 22© 2011 Paul Krzyzanowski 



Kernel execution contexts

• Interrupt context

– Unable to block because there’s no process to reschedule

nothing to put to sleep and nothing to wake up

• User context

– Invoked by a user thread in synchronous function

– May block on a semaphore, I/O, or copying to user memory

– E.g., read invoked by the read system call

– (Linux) Driver can access global variable context

• Pointer to struct task_struct: tells driver who invoked the call

• Kernel context

– Scheduled by kernel scheduler (just like any process)

– No relation to any user threads

– May block on a semaphore, I/O, or copying to user memory

3/21/2011 23© 2011 Paul Krzyzanowski 



Interrupt Handler

• Device drivers register themselves with the interrupt handler

– Hooks registered at initialization: call code when an event happens

• Operations of the interrupt hander

– Save all registers

– Update interrupt statistics: counts & timers

– Call interrupt service routine in driver with the appropriate unit number 

(ID of device that generated the interrupt)

– Restore registers

– Return from interrupt

• The driver itself does not have to deal with saving/restoring registers

3/21/2011 24© 2011 Paul Krzyzanowski 



Handling interrupts quickly

• Processing results of an interrupt may take time

• We want interrupt handlers to finish quickly

– Don’t keep interrupts blocked

3/21/2011 25© 2011 Paul Krzyzanowski 



Delegation: top half → bottom half

• Split interrupt handling into two parts:

– Top half (interrupt handler)

• Part that’s registered with request_irq and is called whenever an 

interrupt is detected.

• Saves data in a buffer/queue, schedules bottom half, exits

– Bottom half (work queue – kernel thread)

• Scheduled by top half for later execution

• Interrupts enabled

• This is where there real work is done

• Linux 2.6 provides tasklets & work queues for dispatching bottom 

halves

• Bottom halves are handled in a kernel context

– Work queues are handled by kernel threads

– One thread per processor (events/0, events/1)

3/21/2011 26© 2011 Paul Krzyzanowski 



I/O Queues

• When I/O request is received 

– Request is placed on a per-device queue for processing

• Device Status Table

– List of devices and the current status of the device

– Each device has an I/O queue attached to it

Device: keyboard

Status: idle

Device: disk 1

Status: idle

Device: disk 2

Status: busy

…

Op:read

Block: 35192

Length: 8192

Address: 0x8fe70211

Op:write

Block: 1204

Length: 4096

Address: 0x8770122d8

Device status table

I/O queue

3/21/2011 27© 2011 Paul Krzyzanowski 



I/O Queues

• Primary means of communication between top & bottom 

halves

• I/O queues are shared among asynchronous functions

– Access to them must be synchronized (critical sections)

3/21/2011 28© 2011 Paul Krzyzanowski 



I/O Scheduling for Block Devices (disks)

3/21/2011 29© 2011 Paul Krzyzanowski 



Elevator Algorithms

• Elevator algorithm (SCAN)

– Know: head position & direction

– Schedule pending I/O in the sequence of the 

current direction

– When the head reaches the end, switch the 

direction

• LOOK

– When there are no more blocks to read/write in the 

current direction, switch direction

• Circular SCAN (C-SCAN)

– Like SCAN, but:

when you reach the end of the disk, seek to the 

beginning without servicing I/O

– Provides more uniform wait time

• C-LOOK

– Like C-SCAN but seek to the lowest track with 

scheduled I/O

current position

High cylinder #

Low cylinder #

3/21/2011 30© 2011 Paul Krzyzanowski 



Shortest Seek Time First (SSTF)

• Know: head position

• Schedule the next I/O that is closest to the 

current head position

• Analogous to shortest job first scheduling

• Distant cylinders may get starved (or 

experience long latency) current position

This gets picked first

3/21/2011 31© 2011 Paul Krzyzanowski 



Scheduling I/O: Linux options

• Completely Fair Queuing (CFQ)

– default scheduler

– distribute I/O equally among all I/O requests

– Synchronous requests

• Go to per-process queues

• Time slices allocated per queue

– Asynchronous requests

• Batched into queues by priority levels

• Deadline

– Each request has a deadline

– Service them using C-SCAN

– If a deadline is threatened, skip to that request

– Helps with real-time performance

– Gives priority to real-time processes. Otherwise, it’s fair

3/21/2011 32© 2011 Paul Krzyzanowski 



Scheduling I/O: Linux options

• NOOP

– Simple FIFO queue - minimal CPU overhead

– Assumes that the block device is intelligent

• Anticipatory

– introduce a delay before dispatching I/O to try to aggregate and/or reorder 

requests to improve locality and reduce disk seek.

– After issuing a request, wait (even if there’s work to be done)

– If a request for nearby blocks occurs, issue it.

– If no request, then C-SCAN

– Fair

– No support for real time

– May result in higher I/O latency

– Works surprisingly well in benchmarks!!

3/21/2011 33© 2011 Paul Krzyzanowski 



Smarter Disks

• Disks are smarter than in the past

– E.g.: WD Caviar Black drives: dual processors, 64 MB cache

• Logical Block Addressing (LBA)

– Versus Cylinder, Head, Sector

• Automatic bad block mapping (can mess up algorithms!)

– Leave spare sectors on a track for remapping

• Native Command Queuing (SATA & SCSI)

– Allow drive to queue and re-prioritize disk requests

– Queue up to 256 commands with SCSI

• Cached data

– Volatile memory; improves read time

• Read-ahead caching for sequential I/O

• Hybrid Hard Drives (HDD)

– Non-volatile RAM (NVRAM) 

3/21/2011 34© 2011 Paul Krzyzanowski 



Solid State Disks

• NAND Flash

– NOR Flash: random access bytes; suitable for execution; lower density

– NAND Flash: block access

• No seek latency

• Asynchronous random I/O is efficient

– Sequential I/O less so

• Writes are less efficient: erase-on-write needed

• Limited re-writes

– Wear leveling becomes important (~ 100K-1M program/erase cycles)

3/21/2011 35© 2011 Paul Krzyzanowski 



Back to drivers

3/21/2011 36© 2011 Paul Krzyzanowski 



Frameworks

• Most drivers are not individual character or block drivers

– Implemented under a framework for a device type

– Goal: create a set of standard interfaces

– e.g., ALSA core, TTY serial, SCSI core, framebuffer devices

• Define common parts for the same kinds of devices

– Still seen as normal devices to users

– Each framework defines a set of operations that the device must

implement

• e.g., framebuffer operations, ALSA audio operations

• Framework provides a common interface

– ioctl numbering for custom functions, semantics, etc.

3/21/2011 37© 2011 Paul Krzyzanowski 



Example of frameworks

System call interface

Character 

driver

ALSA

core

Framebuffer

core

TTY

core
Block Layer

ALSA

driver

Framebuffer

driver
TTY

driver

serial

core

Block

driver

SCSI

core

libata
USB

storage

SATA

driver

serial

driver

3/21/2011 38© 2011 Paul Krzyzanowski 



Example: Framebuffer

• Must implement functions defined in struct fb_ops

– These are framebuffer-specific operations

– xxx_open(), xxx_read(), xxx_write(), xxx_release(),

xxx_checkvar(), xxx_setpar(), xxx_setcolreg(), xxx_blank(),

xxx_pan_display(), xxx_fillrect(), xxx_copyarea(),

xxx_imageblit(), xxx_cursor(), xxx_rotate(), xxx_sync(),

xxx_get_caps(), etc.

• Also must:

– allocate a fb_info structure with framebuffer_alloc()

– set the ->fbops field to the operation structure

– register the framebuffer device with register_framebuffer()

3/21/2011 39© 2011 Paul Krzyzanowski 



Linux 2.6 Unified device/driver model

• Goal: unify the relationship between:

devices, drivers, and buses

• Bus driver

– Interacts with each communication bus that supports devices 

(USB, PCI, SPI, MMC, I2C, etc.)

– Responsible for:

• Registering bus type

• Registering adapter/interface drivers (USB controllers, SPI 

controllers, etc.): devices capable of detecting & providing access to 

devices connected to the bus

• Allow registration of device drivers (USB, I2C, SPI devices)

• Match device drivers against devices

3/21/2011 40© 2011 Paul Krzyzanowski 



Example

USB core

USB adapter driver 1
(USB host controller driver)

USB device driver 1 USB device driver 2

Computer system

USB
controller

USB bus

Device 1 Device 2

Register a bus

(usb_hcd)

Register a device

(usb_driver)

3/21/2011 41© 2011 Paul Krzyzanowski 



Unified driver example

• USB driver is loaded & registered as a USB device driver

• At boot time

– Driver registers itself to the USB bus infrastructure: I’m a USB device driver

• When the bus detects a device

– Bus driver notifies the generic USB bus infrastructure

– The bus infrastructure knows which driver is capable of handling the device

• Generic USB bus infrastructure calls probe() in that device driver, which:

– Initializes device, maps memory, registers interrupt handlers

– Registers the device to the proper kernel framework (e.g., network infrastructure)

• Model is recursive:

– PCI controller detects a USB controller, which detects an I2C adapter, which 

detects an I2C thermometer

3/21/2011 42© 2011 Paul Krzyzanowski 



The End

3/21/2011 43© 2011 Paul Krzyzanowski 


