
Internet Technology
03r. Application layer protocols: email

Paul Krzyzanowski

Rutgers University

Spring 2016

1 February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Email: SMTP

 (Simple Mail Transfer Protocol)

2 February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Simple Mail Transfer Protocol (SMTP)

• Protocol defined in RFC 2821 (April 2001)

– Original definition in RFC 821 (August 1982)

• Designed for:

– Direct transfer of email from the sender to the receiver

(rather then go through a set of relays)

– Destination system is always up and connected

– Use TCP to transfer email from client to destination server

3

Note: There are a lot of variations on email delivery,

transmission, and routing. We’ll look at a basic model here.

Our interest is the app-layer protocol and we’ll avoid the

terminology of mail submission agents, mail transfer agents,

mail exchangers, and mail delivery agents. In most cases one

program serves the role all of these.

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Original model: Alice sends message to Bob

1. Alice uses a mail application (User Agent, UA)

to compose a message to Bob

2. Alice’s UA sends the message to her local mail

server – message is in the outbound queue

3. The local server (acting as an SMTP client)

uses DNS to look up the MX record (Mail

Exchanger) for Bob’s domain; opens TCP

connection with Bob’s mail server

4. Alice’s local mail server (acting as a client)

sends Alice’s message over the TCP

connection using SMTP

5. Bob’s mail server receives it and places the

message in Bob’s mailbox

6. Bob runs his UA, which can access his

mailbox (by opening the file)

4

User agent

(UA)

(mail client)

In the early days of email, users were logged into one system. A mail application would send

a message to a local mail server. The local mail server would maintain a queue and send

messages to their destinations. Receiving users would run a mail application on the server

that would open the mail file – their queue of received messages.

Local

SMTP

client/

server

Client machine Server machine

SMTP

local

system User agent

(UA)

(mail client)

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Alice
Bob

Small enhancements to the model

Mail delivery

• Alice will usually not be on the same

machine as the local SMTP server

• Alice’s UA is a email app running on her

phone or laptop.

• It sends the message to her email

provider’s SMTP server using SMTP

• The email provider uses SMTP to talk to

the destination server

Mail receipt

• Bob is usually not on the same machine

as his mail server

• His mail program (UA) cannot access

his mailbox directly

• Bob’s UA needs to use a network

mailbox access protocol such as IMAP

or POP to get the message

5

User agent

(UA)

(mail client)

User agent

(UA)

(mail client)

Alice’s Mac Bob’s iPhone Alice’s email provider Bob’s email provider

SMTP

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Alice
Bob

Simple Mail Transfer Protocol (SMTP)

Three phases:

1. Handshake (greeting)

2. Transfer of message

3. Close

Command/response interaction

• The SMTP protocol is conversational text

– A sequence of one-line messages & one-line responses

– Then the message followed by a single line containing a period (.)

– Finally, a QUIT command

• All transactions in 7-bit ASCII text

• Responses contain a status code & phrase (like HTTP and FTP)

6 February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

The basic protocol

The following sequence of commands are used to send email

7

HELO cs.rutgers.edu The client identifies itself as cs.rutgers.edu.

This is often ignored now since the server

may do a reverse DNS lookup on the IP

address.

MAIL FROM: <pxk@cs.rutgers.edu> Identify the address of the mail sender.

Note that the domain here may be different

from that in the HELO message.

RCPT TO: <testuser@pk.org>

RCPT TO: <anotheruser@pk.org>
Identify the destination(s) for this message.

You can have a list of these – one line per

destination.

DATA Now give the server the mail message. All

the lines after this are the message. A line

containing a single period ends it.

QUIT We’re done!

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Sample Interaction

8

$ telnet cs.rutgers.edu 25

Trying 128.6.4.2...

Connected to cs.rutgers.edu.

220 aramis.rutgers.edu ESMTP Sendmail 8.11.7p3+Sun/8.8.8; Tue, 9 Feb 2016 14:45:04 -0500 (EST)

HELO cs.rutgers.edu

250 aramis.rutgers.edu Hello aramis.rutgers.edu [128.6.4.2], pleased to meet you

MAIL FROM: <pxk@cs.rutgers.edu>

250 2.1.0 <pxk@cs.rutgers.edu>... Sender ok

RCPT TO: <testuser@pk.org>

250 2.1.5 <testuser@pk.org>... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself

From: Paul Krzyzanowski <pxk@cs.rutgers.edu>

Subject: test message

Date: Tue, 9 Feb 2016 14:46:14 -0500

To: Whomever <testuser@pk.org>

Hi,

This is a test

.

250 2.0.0 r1BLxln29829 Message accepted for delivery

quit

221 2.0.0 aramis.rutgers.edu closing connection

This is the message body.

Headers may define the structure of the

message but are ignored for delivery.

This is a sample interaction with me connecting to a

Rutgers SMTP server via the telnet program and

typing in SMTP commands. My typing is in blue.

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Comparison with HTTP

HTTP

• Pull: you request content

• ASCII command/response

interaction

– Including status codes & messages

• Multiple objects

– Each object (HTML, CSS,

JavaScript, image files) is

requested separately and

encapsulated in its own message

SMTP

• Push: you provide content

• ASCII command/response

interaction

– Including status codes & messages

• Multiple objects

– Multiple objects (attachments)

are sent in one multipart

message

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 9

Mail message format

• RFC 822 defines the basic format for text messages

• Header lines:

– To:

– From:

– Subject:

– Each line contains

 field_name: field_value

– Terminated by a blank line

• Body

– The actual message

• All this is treated as the message by SMTP

– It’s up to the user agents to interpret those headers

10

Header fields

See RFC 822 for details

Message body

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Mail headers versus data

• SMTP is interested in delivering the message

• The crucial data is in the “RCPT TO:” commands

• All mail headers are ignored by the SMTP protocol

– From:, To:, Subject:, Cc:, Bcc:, etc.

– These are strictly for the mail apps (user agents) to use

– Mail is delivered exactly the same way whether a recipient is

specified as a To, Cc, or Bcc:

they will always end up as RCPT TO: commands in SMTP

• The User Agent can determine what to display

11 February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Problem: We want to send more than text

• Originally – we used email to just send plain text (ASCII)

• Later – we wanted to send:

– Rich text or HTML text (formatted)

– One or more Images

– One or more attached files

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski 12

Multimedia extensions: MIME

• MIME: multimedia mail extensions (RFC 2045, 2056)

• Lines in the message header define the content type

13

From: Paul Krzyzanowski <p@pk.org>

Content-Type: image/jpg

Content-Transfer-Encoding: base64

Subject: test mime

Date: Tue, 9 Feb 2016 13:09:50 -0500

To: Paul Krzyzanowski <p@pk.org>

Mime-Version: 1.0

Content-Disposition: inline; filename=test-

photo.jpg

/9j/4RZpRXhpZgAATU0AKgAAAAgADAEAAAMAAAABAcIAA

AEBAAMAAAABAUEAAAECAAMAAAADAAAA

ngEGAAMAAAABAAIAAAESAAMAAAABAAEAAAEVAAMAAAABA

AMAAAEaAAUAAAABAAAApAEbAAUAAAAB

Version of the format

Type of data

Method used to encode the data

Other stuff, such as how to

present the data and what the

filename is

Base64 encoded data

(allows us to send

arbitrary binary data

using 7-bit ascii

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Multimedia extensions: multipart MIME

Support multiple items in

one message

14

From: Paul Krzyzanowski <p@pk.org>

Content-Type: multipart/mixed;

 boundary=”Split-96E43D94-57D4"

Subject: multipart mime demo

Date: Tue, 9 Feb 2016 13:09:50 -0500

To: Paul Krzyzanowski <p@pk.org>

Mime-Version: 1.0

--Split-96E43D94-57D4

Content-Disposition: INLINE;

 filename=test_image.jpg

Content-Type: IMAGE/JPG;

 name=test_image.jpg; x-unix-mode=0644

Content-Transfer-Encoding: BASE64

/9j/4RZpRXhpZgAAT <rest of content>

--Split-96E43D94-57D4

Content-Disposition: ATTACHMENT;

 filename=test.skp

Content-Type: APPLICATION/OCTET-STREAM;

 name=test.skp; x-unix-mode=0644

Content-Transfer-Encoding: BASE64

//7/DlMAawBl ... <rest of content>

Start of content 2

Start of content 1

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Boundary definition

Mail access protocols: POP & IMAP

15 February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

Mail access

• SMTP deals with mail delivery (sending)

– Sending messages to their destination

• When people ran mail apps on machines other than the

mail server:

– The app didn’t have direct (file system) access to the mailbox

– A protocol was needed to interact with the user’s mailbox on the

server

• Two protocols were developed

– POP3: Post Office Protocol version 3 (RFC 1939)

– IMAP: Internet Mail Access Protocol (RFC 1730)

16 February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

POP3

• Client (mail application) connects to TCP port 110

• Three phases:

1. Identification & authentication

• Send user name and password

2. Transaction

• Mail access commands

3. Update & exit

17 February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

POP3: Authentication

• User login commands

– user username

– pass password

• All commands are sent

in plain text

– This is not secure since internet

traffic can be intercepted

– It is a fundamental weakness here and with other protocols (HTTP,

telnet, ftp)

– POP3 is usually run over an encrypted session

18

$ telnet pk.org 110

Trying 192.168.60.130...

Connected to pk.org.

+OK Dovecot ready.

user paul

+OK

pass mypassword

+OK Logged in.

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

POP3: Transaction

After authentication, the mail app (user agent) sends a series of

commands to fetch or delete mail messages

– stat show the number of messages in the mailbox and total size

– list show a list of messages with the size of each message.

 A line containing a period indicates end of data

– retr retrieve a specific message

19

stat

+OK 3 5467

list

+OK Mailbox scan listing follows

1 1823

2 1825

3 1819

retr 2

+OK 1823 octets

--- all message headers and message

message content, including headers

.

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

POP3: Transaction

After authentication, the mail app (user agent) sends a series of

commands to fetch or delete mail messages

– dele delete a specific message

– rset reset the session: undo all deletes

20

Dele 1

+OK Message deleted

rset

+OK Reset state

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

POP3: Update & exit

When done with the session, make changes permanent

– quit commit changes and exit

21

quit

+OK Goodbye

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

POP3 behaviors

• “download-and-delete” behavior

• A mail client connects to a server

• Download messages into its local mailbox

• Delete them from the server

– This isn’t useful when you access mail from multiple devices

• Once a message goes to a device, it’s no longer on the server

• “download-and-keep” behavior

• A mail client client connects to a server

• Downloads messages but does not delete them

• User may delete specific messages

– A user can access messages from another device

– But POP3 does not keep session state

• It does not know if a user marked a message for deletion during a previous

session

22 February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

IMAP: Internet Message Access Protocol

• With POP3

– Folders, moving messages, & search are all handled at the client with

client downloads of the messages

• IMAP was created for users who access mail from multiple clients

– IMAP keeps all messages on the server

– User can organize messages in folders

– State is stored on the server & available across sessions

• Names of folders

• Message ID mappings

• Mark for deletion

– Messages reside in folders

– Commands allow users to

• Create/delete folders, move messages between folders, search for

specific messages, mark messages for deletion, delete messages, fetch

headers only

23 February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

IMAP Commands

• We won’t cover the IMAP protocol

– It’s a lot uglier and a lot more verbose

– See RFC 3501

• TCP connection

• All commands are sent as lines of ASCII text

– Commands are more verbose – spelled out, not abbreviated

– Each command is prefixed with a unique tag (unique per session)

– A sequence of commands can be sent without waiting for a

response before sending the next one

24 February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

IMAP Protocol Example

• Login

• List folders

• Fetch message 1 with full headers

25

a01 login paul mypassword

RESPONSE: a01 OK User logged in

a02 list "Mail" "*“

* LIST (\NoSelect) "/" Mail

* LIST (\NoInferiors \Marked) "/" Mail/Trash

* LIST (\NoInferiors \Marked) "/" Mail/Sent

* LIST (\NoInferiors \UnMarked) "/" Mail/Drafts

* LIST (\NoSelect) "/" Mail/inbox

 <stuff deleted>

a02 OK LIST complete

a03 fetch 1 full

* 1 FETCH (FLAGS (\Seen) INTERNALDATE ”13-Feb-2013 14:46:22 -0500"

RFC822.SIZE 1

553 ENVELOPE ("Wed, 13 Feb 2013 14:46:22 -0400 “Test Message”

 <stuff deleted>

a03 OK FETCH completed

February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

The end

26 February 10, 2016 CS 352 © 2013-2016 Paul Krzyzanowski

