The Reach Profiler (REAPER):

Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions

Minesh Patel Jeremie S. Kim Onur Mutlu

Carnegie Mellon

DRAM

Leaky Cells

Periodic DRAM Refresh

Performance + Energy Overhead

Goal: find *all* retention failures for a refresh interval T > default (64ms)

Process, voltage, temperature

Variable retention time

Data pattern dependence

Characterization of 368 LPDDR4 DRAM Chips

1

Cells are more likely to fail at an increased (refresh interval | temperature)

2

Complex tradeoff space between profiling (speed & coverage & false positives)

refresh interval

Reach Profiling

A new DRAM retention failure profiling methodology

+ Faster and more reliable than current approaches

+ Enables longer refresh intervals

The Reach Profiler (REAPER):

Enabling the Mitigation of DRAM Retention Failures via Profiling at Aggressive Conditions

Session 4A, 4-5:40pm

Minesh Patel Jeremie S. Kim Onur Mutlu

Carnegie Mellon