
CS 211: Intro to Computer Architecture
9.2: RISC-V Assembly

Spring 2025 – Thursday 27 March

Minesh Patel

Announcements

•Assignments
•PA3: due Friday @ 23:59

•Extra Credit: replaces WA6, due in two weeks

2

Agenda

•Inside a Processor
•Lots of Pictures
•Inside a Processor Core
•Cache and Register Memory

•RISC-V Assembly
•Instructions and Opcodes
•Immediate Values
•Function Arguments

Recap: Processor and Memory

4

Memory
(numbers that represent

various things)

Program
(instructions for

number manipulation)
main:

addi sp,sp,-32
sd ra,24(sp)
sd s0,16(sp)
addi s0,sp,32
mv a5,a0
sd a1,-32(s0)
sw a5,-20(s0)
lla a0,.LC0
call puts@plt
li a5,0
mv a0,a5
ld ra,24(sp)
ld s0,16(sp)
addi sp,sp,32
jr ra

<Bunch of
Numbers>

main() function
“Load” instructions from memory

“Store” numbers to memory

Processor
(executes instructions)

Let’s take a
look inside

“From Sand to Silicon”

5

Intel, “Making of a Chip Illustrations,” January 2012.

“From Sand to Silicon”

6

Intel, “Making of a Chip Illustrations,” January 2012.

SiFive RISC-V Processor Wafer

7

Hennessy and Patterson, “Computer Architecture” 6/E. SiFive, “HiFive1 Rev B Schematics,” 2021.

Mental Model: What’s Inside a Processor?

8

Core 0 Core 1 ...

I/O (Disk, USB, etc.)

CS 211 Abstraction of a Processor

Memory Interface

Inside an Intel i9-13900K

9https://upload.wikimedia.org/wikipedia/commons/a/a4/Intel_Core_i9-13900K_Labelled_Die_Shot.jpg

Inside an Intel i9-13900K

10

CS 211

https://upload.wikimedia.org/wikipedia/commons/a/a4/Intel_Core_i9-13900K_Labelled_Die_Shot.jpg

Agenda

•Inside a Processor
•Lots of Pictures
•Inside a Processor Core
•Cache and Register Memory

•RISC-V Assembly
•Instructions and Opcodes
•Immediate Values
•Function Arguments

Inside a Processor Core: Overview

12

Control Logic
(Coordinates the datapath)

Core (CPU)

Datapath
(Executes instructions)

Register Memory

Cache to
Main

MemoryRead/Write Data

Memory Address

Main
Memory

Two new memories!

Big, slow
(~60 ns / access)

Small, fast
(~300 ps / access)

Medium
(~1 ns / access)

• Both are performance optimizations
• Beyond the C language abstraction
• Much faster to access than main memory

Performance: “c = a + b” In Register Memory

13

Control Logic
(Coordinates the datapath)

Core (CPU)

Datapath
(Executes instructions)

Register Memory

Cache to
Main

MemoryRead/Write Data

Memory Address

Main
Memory

Big, slow
(~60 ns / access)

Small, fast
(~300 ps / access)

Medium
(~1 ns / access)

c = a + b;

C Statement

c a b

Performance: “c = a + b” In Main Memory

14

Control Logic
(Coordinates the datapath)

Core (CPU)

Datapath
(Executes instructions)

Register Memory

Cache to
Main

MemoryRead/Write Data

Memory Address

Main
Memory

Big, slow
(~60 ns / access)

Small, fast
(~300 ps / access)

Medium
(~1 ns / access)

c = a + b;

C Statement c a b

Aside: Memory Hierarchy

15Hennessy and Patterson, “Computer Architecture” 6/E.

S
m

a
ll

e
r,

 f
a

st
L

a
rg

e
r, slo

w
e

r

We’ll ignore caches for a few weeks

Registers vs. Main Memory

16

RV32 (32-bit)

RISC-V Version Word Size

32-bits

RV64 (64-bit) 64-bits

RV128 (128-bit) 128-bits

Registers Main Memory

…

“x0”
“x1”
“x2”

“x31”

Width = Word Size

…

0x0000_0000_0000_0000
0x0000_0000_0000_0001
0x0000_0000_0000_0002

0xffff_ffff_ffff_ffff

Always 1 byte
(recall: “byte addressable”)

This
Course

‘x’ is just a name:
does NOT refer
to hex values Array of bytesArray of “words”

Final Model of a CPU

17

Control Logic
(Coordinates the datapath)

CPU

Datapath
(Executes instructions)

Register MemoryRead/Write Data

Memory Address

Main
Memory

Assembly instructions
operate on registers

.func
add x10, x11, x12 # x10 = x11 + x12

Special “load” and “store” instructions
access main memory

.func
lw x10, 0(x11) # x10 = *(x11 + 0)
sw x10, 8(x11) # *(x11 + 8) = x10

Agenda

•Inside a Processor
•Lots of Pictures
•Inside a Processor Core
•Cache and Register Memory

•RISC-V Assembly
•Instructions and Opcodes
•Immediate Values
•Function Arguments

Assembly Has No Type System

•Every register is just a collection of bits

•Could represent….
• A memory address
• A register “address” (e.g., 6 = x6)
• A two’s complement integer
• An unsigned integer
• A character
• …

•Your job to decide + keep track

19

Register Memory

0x0000_0000_0000_0000

0x0000_fe3a_0ff1_237a

0x0000_0000_0000_0006

0x0000_0000_0000_0065

…
“x0”

“x1”

“x2”

“x31”

Special Registers

•By convention, some registers are reserved for specific uses

20“RISC-V ABIs Specification,” Version 1.1.

We will mostly
talk about these

Agenda

•Inside a Processor
•Lots of Pictures
•Inside a Processor Core
•Cache and Register Memory

•RISC-V Assembly
•Instructions and Opcodes
•Immediate Values
•Function Arguments

Instruction Examples

•Assembly programs have one instruction per line of source code

22

opcode rd, rs1, rs2

The operation to perform
(e.g., add, bit shift, load/store)

Destination
register

Source
register(s)

add x5, x6, x7

x5 = x6 + x7

sub x5, x6, x7

x5 = x6 – x7

Comparing C and Assembly Code

23

a = b + c;

C Statement

add x5, x6, x7 # a = b + c

Equivalent Assembly Code

Python-style comments

C Object Register

uint64_t a x5
uint64_t b x6
uint64_t c x7

“Register Allocation”

Example Assembly Code

24

Equivalent Assembly Code

add x5, x6, x7 # a = b + c
sub x5, x5, x8 # a -= d

C Statement(s)

a = b + c - d;

a += b + c - d; add x5, x5, x6 # a += b
add x5, x5, x7 # a += c
sub x5, x5, x8 # a -= d

Not necessarily
unique

C Object Register

uint64_t a x5
uint64_t b x6
uint64_t c x7
uint64_t d x8

Multiple
instructions

needed

RV64i Reference Sheets

•We are using a subset of the RISC-V ISA called “RV64i”

25
https://www.cl.cam.ac.uk/teaching/1617/ECAD+Arc

h/files/docs/RISCVGreenCardv8-20151013.pdf
https://www.cs.utahtech.edu/cs/2810/riscv-card.pdf

~57 Total
Instructions

RISC-V Instruction Set Manual

26
https://github.com/riscv/riscv-isa-manual/

Example: ADD/SUB/AND/OR/XOR/SHIFT

https://github.com/riscv/riscv-isa-manual/

Bitwise Instructions

27

a = b & c; add x5, x6, x7

C Statement Equivalent Assembly Code

C Object Register

uint64_t a x5
uint64_t b x6
uint64_t c x7

“Register Allocation”

a = b | c;

a = b ^ c;

or x5, x6, x7

xor x5, x6, x7

Logical (Unsigned) Bit Shifts

28

a = b << c; sll x5, x6, x7

C Statement Equivalent Assembly Code

C Object Register

uint64_t a x5
uint64_t b x6
uint64_t c x7

“Register Allocation”

a = b >> c; srl x5, x6, x7

Arithmetic (Signed) Bit Shifts

29

a = b << c;

C Statement Equivalent Assembly Code

C Object Register

int64_t a x5
int64_t b x6
int64_t c x7

“Register Allocation”

a = b >> c; sra x5, x6, x7

<does not exist>

Register Copy

30

C Statement Equivalent Assembly Code

C Object Register

uint64_t a x5
uint64_t b x6

“Register Allocation”

a = b; mv x5, x6

Pseudo-Instruction
Syntactic sugar to the assembler
(not a machine code instruction)

add x5, x0, x6

Agenda

•Inside a Processor
•Lots of Pictures
•Inside a Processor Core
•Cache and Register Memory

•RISC-V Assembly
•Instructions and Opcodes
•Immediate Values
•Function Arguments

Immediate Values

32

C Statement(s) Equivalent Assembly Code

addi x5, x0, 0x1 # a = 0 + 1a = 1;

C Object Register

uint64_t a x5

Numeric
constants

addi x5, x0, -0x1 # a = 0 - 1a = -1;

String Constants

33

C Statement(s)

Equivalent Assembly Code

string:
.asciz "cs211"

func:
la x5, string

void func(void)
{
 const char *a = "cs211";
}

C Object Register

char *a x5

Label
Defines a pointer to a
location in the code

Pseudo-Instruction
Syntactic sugar to the assembler
(not a machine code instruction)

RV64i So Far

34

Register-Register Arithmetic

add rd, rs1, rs2
sub rd, rs1, rs2
and rd, rs1, rs2
or rd, rs1, rs2
xor rd, rs1, rs2
sll rd, rs1, rs2
srl rd, rs1, rs2
sra rd, rs1, rs2

Register-Immediate Arithmetic

addi rd, rs1, imm

Pseudo-Instructions

.asciz <C–style string>

Instructions

mv rd, rs1

Agenda

•Inside a Processor
•Lots of Pictures
•Inside a Processor Core
•Cache and Register Memory

•RISC-V Assembly
•Instructions and Opcodes
•Immediate Values
•Function Arguments

C Function Calling Conventions

•Function arguments are in a0-a7

•Return values are in a0 (+a1, if >64 bits)

•Narrower C types are sign/zero extended

36

func:
add a0, a0, a1
ret

int // return: a0
func(uint8_t a, // a: a0

uint16_t b, // b: a1
char *c, // c: a2
uint64_t d, // d: a3
int e, // e: a4
char f, // f: a5
unsigned int g, // g: a6
void *****h) // h: a7

{
return a + b;

}

func.c

func.S

CS 211: Intro to Computer Architecture
9.2: RISC-V Assembly

Spring 2025 – Thursday 27 March

Minesh Patel

	Default Section
	Slide 1: CS 211: Intro to Computer Architecture 9.2: RISC-V Assembly
	Slide 2: Announcements
	Slide 3: Agenda
	Slide 4: Recap: Processor and Memory
	Slide 5: “From Sand to Silicon”
	Slide 6: “From Sand to Silicon”
	Slide 7: SiFive RISC-V Processor Wafer
	Slide 8: Mental Model: What’s Inside a Processor?
	Slide 9: Inside an Intel i9-13900K
	Slide 10: Inside an Intel i9-13900K
	Slide 11: Agenda
	Slide 12: Inside a Processor Core: Overview
	Slide 13: Performance: “c = a + b” In Register Memory
	Slide 14: Performance: “c = a + b” In Main Memory
	Slide 15: Aside: Memory Hierarchy
	Slide 16: Registers vs. Main Memory
	Slide 17: Final Model of a CPU
	Slide 18: Agenda
	Slide 19: Assembly Has No Type System
	Slide 20: Special Registers
	Slide 21: Agenda
	Slide 22: Instruction Examples
	Slide 23: Comparing C and Assembly Code
	Slide 24: Example Assembly Code
	Slide 25: RV64i Reference Sheets
	Slide 26: RISC-V Instruction Set Manual
	Slide 27: Bitwise Instructions
	Slide 28: Logical (Unsigned) Bit Shifts
	Slide 29: Arithmetic (Signed) Bit Shifts
	Slide 30: Register Copy
	Slide 31: Agenda
	Slide 32: Immediate Values
	Slide 33: String Constants
	Slide 34: RV64i So Far
	Slide 35: Agenda
	Slide 36: C Function Calling Conventions
	Slide 37: CS 211: Intro to Computer Architecture 9.2: RISC-V Assembly

