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Announcements

•Assignments
•PA3: due Friday @ 23:59

•Extra Credit: replaces WA6, due in two weeks
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Agenda

•Inside a Processor
•Lots of Pictures
•Inside a Processor Core
•Cache and Register Memory

•RISC-V Assembly
•Instructions and Opcodes
•Immediate Values
•Function Arguments



Recap: Processor and Memory
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Memory
(numbers that represent 

various things)

Program
(instructions for 

number manipulation)
main: 

addi sp,sp,-32 
sd ra,24(sp) 
sd s0,16(sp) 
addi s0,sp,32 
mv a5,a0 
sd a1,-32(s0) 
sw a5,-20(s0) 
lla a0,.LC0 
call puts@plt 
li a5,0 
mv a0,a5 
ld ra,24(sp) 
ld s0,16(sp) 
addi sp,sp,32 
jr ra

<Bunch of 
Numbers>

main() function
“Load” instructions from memory

“Store” numbers to memory

Processor
(executes instructions)

Let’s take a 
look inside



“From Sand to Silicon”
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Intel, “Making of a Chip Illustrations,” January 2012.



“From Sand to Silicon”
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Intel, “Making of a Chip Illustrations,” January 2012.



SiFive RISC-V Processor Wafer
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Hennessy and Patterson, “Computer Architecture” 6/E. SiFive, “HiFive1 Rev B Schematics,” 2021.



Mental Model: What’s Inside a Processor?
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Core 0 Core 1 ...

I/O (Disk, USB, etc.)

CS 211 Abstraction of a Processor

Memory Interface



Inside an Intel i9-13900K

9https://upload.wikimedia.org/wikipedia/commons/a/a4/Intel_Core_i9-13900K_Labelled_Die_Shot.jpg



Inside an Intel i9-13900K
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CS 211

https://upload.wikimedia.org/wikipedia/commons/a/a4/Intel_Core_i9-13900K_Labelled_Die_Shot.jpg



Agenda

•Inside a Processor
•Lots of Pictures
•Inside a Processor Core
•Cache and Register Memory

•RISC-V Assembly
•Instructions and Opcodes
•Immediate Values
•Function Arguments



Inside a Processor Core: Overview
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Control Logic
(Coordinates the datapath)

Core (CPU)

Datapath 
(Executes instructions)

Register Memory

Cache to 
Main 

MemoryRead/Write Data

Memory Address

Main
Memory

Two new memories!

Big, slow
(~60 ns / access)

Small, fast
(~300 ps / access)

Medium
(~1 ns / access)

• Both are performance optimizations
• Beyond the C language abstraction
• Much faster to access than main memory



Performance: “c = a + b” In Register Memory
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Control Logic
(Coordinates the datapath)

Core (CPU)

Datapath 
(Executes instructions)

Register Memory

Cache to 
Main 

MemoryRead/Write Data

Memory Address

Main
Memory

Big, slow
(~60 ns / access)

Small, fast
(~300 ps / access)

Medium
(~1 ns / access)

c = a + b;

C Statement

c a b



Performance: “c = a + b” In Main Memory
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Control Logic
(Coordinates the datapath)

Core (CPU)

Datapath 
(Executes instructions)

Register Memory

Cache to 
Main 

MemoryRead/Write Data

Memory Address

Main
Memory

Big, slow
(~60 ns / access)

Small, fast
(~300 ps / access)

Medium
(~1 ns / access)

c = a + b;

C Statement c a b



Aside: Memory Hierarchy

15Hennessy and Patterson, “Computer Architecture” 6/E.
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We’ll ignore caches for a few weeks



Registers vs. Main Memory
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RV32 (32-bit )

RISC-V Version Word Size

32-bits

RV64 (64-bit) 64-bits

RV128 (128-bit) 128-bits

Registers Main Memory

…

“x0”
“x1”
“x2”

“x31”

Width = Word Size

…

0x0000_0000_0000_0000
0x0000_0000_0000_0001
0x0000_0000_0000_0002

0xffff_ffff_ffff_ffff

Always 1 byte 
(recall: “byte addressable”)

This 
Course

‘x’ is just a name: 
does NOT refer 
to hex values  Array of bytesArray of “words”



Final Model of a CPU
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Control Logic
(Coordinates the datapath)

CPU

Datapath 
(Executes instructions)

Register MemoryRead/Write Data

Memory Address

Main
Memory

Assembly instructions 
operate on registers

.func
add x10, x11, x12  # x10 = x11 + x12

Special “load” and “store” instructions 
access main memory

.func
lw x10, 0(x11) # x10 = *(x11 + 0)
sw x10, 8(x11) # *(x11 + 8) = x10
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•Inside a Processor
•Lots of Pictures
•Inside a Processor Core
•Cache and Register Memory

•RISC-V Assembly
•Instructions and Opcodes
•Immediate Values
•Function Arguments



Assembly Has No Type System

•Every register is just a collection of bits

•Could represent….
• A memory address
• A register “address” (e.g., 6 = x6)
• A two’s complement integer
• An unsigned integer
• A character
• …

•Your job to decide + keep track
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Register Memory

0x0000_0000_0000_0000

0x0000_fe3a_0ff1_237a

0x0000_0000_0000_0006

0x0000_0000_0000_0065

…
“x0”

“x1”

“x2”

“x31”



Special Registers

•By convention, some registers are reserved for specific uses

20“RISC-V ABIs Specification,” Version 1.1.

We will mostly 
talk about these
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•Inside a Processor Core
•Cache and Register Memory

•RISC-V Assembly
•Instructions and Opcodes
•Immediate Values
•Function Arguments



Instruction Examples

•Assembly programs have one instruction per line of source code
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opcode rd, rs1, rs2

The operation to perform
(e.g., add, bit shift, load/store)

Destination 
register

Source 
register(s)

add x5, x6, x7

x5 = x6 + x7

sub x5, x6, x7

x5 = x6 – x7



Comparing C and Assembly Code
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a = b + c;

C Statement

add x5, x6, x7 # a = b + c

Equivalent Assembly Code

Python-style comments

C Object Register

uint64_t a  x5
uint64_t b  x6
uint64_t c  x7

“Register Allocation”



Example Assembly Code
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Equivalent Assembly Code

add x5, x6, x7 # a = b + c
sub x5, x5, x8 # a -= d

C Statement(s)

a = b + c - d;

a += b + c - d; add x5, x5, x6 # a += b 
add x5, x5, x7 # a += c
sub x5, x5, x8 # a -= d

Not necessarily 
unique

C Object Register

uint64_t a  x5
uint64_t b  x6
uint64_t c  x7
uint64_t d  x8

Multiple 
instructions 

needed



RV64i Reference Sheets

•We are using a subset of the RISC-V ISA called “RV64i” 
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https://www.cl.cam.ac.uk/teaching/1617/ECAD+Arc

h/files/docs/RISCVGreenCardv8-20151013.pdf
https://www.cs.utahtech.edu/cs/2810/riscv-card.pdf

~57 Total 
Instructions



RISC-V Instruction Set Manual
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https://github.com/riscv/riscv-isa-manual/

Example: ADD/SUB/AND/OR/XOR/SHIFT

https://github.com/riscv/riscv-isa-manual/


Bitwise Instructions
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a = b & c; add x5, x6, x7

C Statement Equivalent Assembly Code

C Object Register

uint64_t a  x5
uint64_t b  x6
uint64_t c  x7

“Register Allocation”

a = b | c;

a = b ^ c;

or x5, x6, x7

xor x5, x6, x7



Logical (Unsigned) Bit Shifts
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a = b << c; sll x5, x6, x7

C Statement Equivalent Assembly Code

C Object Register

uint64_t a  x5
uint64_t b  x6
uint64_t c  x7

“Register Allocation”

a = b >> c; srl x5, x6, x7



Arithmetic (Signed) Bit Shifts
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a = b << c;

C Statement Equivalent Assembly Code

C Object Register

int64_t a  x5
int64_t b  x6
int64_t c  x7

“Register Allocation”

a = b >> c; sra x5, x6, x7

<does not exist>



Register Copy
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C Statement Equivalent Assembly Code

C Object Register

uint64_t a  x5
uint64_t b  x6

“Register Allocation”

a = b; mv x5, x6

Pseudo-Instruction
Syntactic sugar to the assembler
(not a machine code instruction)

add x5, x0, x6
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Immediate Values
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C Statement(s) Equivalent Assembly Code

addi x5, x0, 0x1 # a = 0 + 1a = 1;

C Object Register

uint64_t a  x5

Numeric 
constants

addi x5, x0, -0x1 # a = 0 - 1a = -1;



String Constants
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C Statement(s)

Equivalent Assembly Code

string: 
.asciz "cs211"

func: 
la x5, string

void func(void)
{
  const char *a = "cs211";
}

C Object Register

char *a  x5

Label
Defines a pointer to a 
location in the code

Pseudo-Instruction
Syntactic sugar to the assembler
(not a machine code instruction)



RV64i So Far
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Register-Register Arithmetic

add rd, rs1, rs2
sub rd, rs1, rs2
and rd, rs1, rs2
or rd, rs1, rs2
xor rd, rs1, rs2
sll rd, rs1, rs2
srl rd, rs1, rs2
sra rd, rs1, rs2

Register-Immediate Arithmetic

addi rd, rs1, imm

Pseudo-Instructions

.asciz <C–style string>

Instructions

mv rd, rs1
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C Function Calling Conventions

•Function arguments are in a0-a7

•Return values are in a0 (+a1, if >64 bits)

•Narrower C types are sign/zero extended
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func:
add a0, a0, a1
ret

int                  // return: a0
func(uint8_t a,      // a: a0

uint16_t b,      // b: a1
char *c,         // c: a2
uint64_t d,      // d: a3
int e,           // e: a4
char f,          // f: a5
unsigned int g,  // g: a6
void *****h) // h: a7

{ 
return a + b;

}

func.c

func.S
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