
CS 211: Intro to Computer Architecture
7.1: Dynamic Memory Management

Spring 2025 – Tuesday 4 March

Minesh Patel

Announcements

•PA2 survey announced via Canvas

•This week:
• WA4 + WA5: assigned through Canvas; due next Tuesday @ 23:59

• Short and simple: combined difficulty == WA1/2/3

• PA3: TBA tomorrow or Thursday, due after spring break
• Encompasses pointers, arrays, and memory management

• Please skim the doc and code immediately so you know what you’re getting into

•Next week:
• No recitations, but extra office hours instead
• Tuesday’s lecture will be partially exam review

Midterm Preparation

•The WAs will be representative for questions

•We will draw on material from lectures, WAs, and PAs

•We are working on:
• Some sort of “practice sheet” for later this week
• A list of topics that will be covered

3

The CSL and RUCATS are Both Hiring

•RUCATS hiring form

•CSL hiring form

4

https://forms.gle/3wzHQx8PqX5hBUXm7
https://docs.google.com/forms/d/e/1FAIpQLScq2_lwqtS8YiMtda549uCqI4r6B_15YVKBKec7IPdcxg_MQA/viewform

Reference Material

•Today’s lecture draws heavily from:
• CS 61C @ UC Berkeley (Prof. Dan Garcia)

5

And Various C and Linux Reference Materials

https://cs61c.org/sp25/

A Simplified C Library Reference: manual.cs50.io

6

https://manual.cs50.io/

Agenda

•Functions

•Loaders and the C Memory Layout

•Dynamic Memory Allocation

•C Generics
•C Library Functions

Recap: C’s Type System

8

•void

•basic types
• char
• signed integers
• unsigned integers

• floating-point

•enumerated types

•derived types
• structures
• pointers
• arrays
• unions
• functions Almost done!

Where?

Recap: A 64-bit Address Space

9

0x0000_0000_0000_0000

0xffff_ffff_ffff_ffff

64-bit address space
(2^64 bytes)

int16_t i = INT16_MAX;

int16_t *p = &i;

0x7fff

&i

&i

&p

Somewhere
in memory

Functions in Memory

10

0x0000_0000_0000_0000

0xffff_ffff_ffff_ffff

64-bit address space
(2^64 bytes)

void func(int a) {...}

void test(void)
{

uint64_t u = 0x211;
}

<executable code
for func>

&func

0x211
&u

<executable code
for test>

&test

its binary representation
is numbers called “machine code”
(more on this after spring break)

Code lives in
memory, too

Data

Addresses of
“func” and “test”

Code Lives in Memory, Too

11

Function Pointers

12

0x0000_0000_0000_0000

0xffff_ffff_ffff_ffff

64-bit address space
(2^64 bytes)

void func(int a) {...}

void test(void)
{

void (*p)(int a) = &func;
(*p)(1);

}

<executable code
for func>

&func

&func
&p

<executable code
for test>

&test

Identifier ‘p’
points to ‘func’

Function Pointer Syntax: Best Practice

13

void test(int a)
{

void (*fn)(int a) = &test;
(*fn)(1);

}

void test(int a)
{

void (*fn)(int a) = test;
fn(1);

}

Equivalent Code

• The compiler implicitly converts
function identifiers to pointers

• Best practice: prefer explicitness

Function identifier

We will come back to function
pointers on Thursday

Agenda

•Functions

•Loaders and the C Memory Layout

•Dynamic Memory Allocation

•C Generics
•C Library Functions

Loading a Program into Memory

•A special program called the “loader” parses the executable file generated
by GCC and loads it bit-by-bit into memory

15

•Q: How does your program (all the code, C objects, etc.) get into memory?

netid@ilab:~$ gcc -o hello hello.c
netid@ilab:~$./hello world
Hello, World
netid@ilab:~$

A C Program’s Address Space

•The loader’s job: fill in memory

•So far, we’ve treated all bytes in
memory as equal
• Surprise: they’re not equal

16

64-bit
address space

(2^64 bytes)

0x0000_0000_0000_0000

0xffff_ffff_ffff_ffff

Memory

Sections of the Address Space

17

text
(executable code; read only)

data
(global and static variables)

heap
(malloc()’ed objects)

…

Typical C Program’s
Address Space

stack
(local variables inside functions)

…

•Many parts of a C program
• Executable code (i.e., your functions)
• Data (i.e., your C objects)

• Initialized and uninitialized data

• Compiler-allocated and dynamically-allocated

• Debugging information
• …

netid@ilab:~$ gcc -o hello hello.c
netid@ilab:~$./hello world
Hello, World
netid@ilab:~$

Loader

text
(executable code; read only)

data
(global and static variables)

heap
(malloc()’ed objects)

…

Typical C Program’s
Address Space

stack
(local variables inside functions)

…

Sections of the Address Space: text

•Read-only section for executable code

18

void func(int a) {...}

void test(void)
{

uint64_t u = 0x211;
}

&func
&test
&main

• Just a bunch of numbers
• Representation = “machine code”
• More on this after Spring Break

text
(executable code; read only)

data
(global and static variables)

heap
(malloc()’ed objects)

…

Typical C Program’s
Address Space

stack
(local variables inside functions)

…

Sections of the Address Space: stack

•Any variable inside a function (“local” variables)

•Lives only within the function

19

&stack0
&stack1
&stack2

int main(int argc, char **argv)
{

uint64_t stack0[100] = {0x211};
uint64_t *stack1 = stack0;

...
}

void func(void)
{

struct test stack2;

...
} More on this

after Spring Break

Aside: Variable Scope in C

•C objects exist only within their “scope”

20

#include <stdlib.h>

int64_t a = 0;

void func_0(void)
{

int64_t a = 1;
for(int a = 2; a <= 2; a++)
{
 {

int a = 3;
printf("%d\n", a); // a = 3

 }
printf("%d\n", a); // a = 2

}
printf("%d\n", a); // a = 1

}

void func_1(void)
{

printf("%d\n", a); // a = 0
}

“Local”: Block Scope

•The innermost block { … } is in scope

•Live as long as the scope

“Global”: File Scope

• In scope for everything in the file

•Live as long as the program

Aside: Two Types of Global Variables

21

#include <stdlib.h>

int64_t a = 0;

void func_0(void)
{

a++;
printf("%d\n", a); // prints 2, then 4

}

int main(int argc, int *argv[])
{

a++;
func_0();
a++;
func_0();

}

Global
visible to all functions in the file

#include <stdlib.h>

void func_0(void)
{

static int64_t a = 1;
a++;
printf("%d\n", a); // prints 2, then 3

}

int main(int argc, int *argv[])
{

static int64_t a = 2; // different ‘a’
func_0();
func_0();

}

Static
persists between function calls

text
(executable code; read only)

data
(global and static variables)

heap
(malloc()’ed objects)

…

Typical C Program’s
Address Space

stack
(local variables inside functions)

…

Sections of the Address Space: data

•Static and global variables

•Live as long as the entire program

22

uint64_t data2[100];

int main(int argc, char **argv)
{

static uint64_t *data0 = NULL;
...

}

void func(void)
{

static uint64_t *data1;
...

}

&data0
&data1
&data2

text
(executable code; read only)

data
(global and static variables)

heap
(malloc()’ed objects)

…

Typical C Program’s
Address Space

stack
(local variables inside functions)

…

Sections of the Address Space: heap

•Any object created with malloc()
• Lives until it is free()’d

23

int main(int argc, char **argv)
{

uint64_t *heap0 = (uint64_t *)malloc(sizeof(uint64_t)));
uint64_t *heap1 = (uint64_t *)malloc(sizeof(uint64_t) * N));

*heap0 = 1;
heap1[N - 1] = 0x211;

free(heap0);
free(heap1);

}

heap0
heap1

Inspecting Sections of an Executable File

•Clearly, there’s more

•Extra sections for
• Initialization
• Debugging (e.g., GDB)
• Metadata (e.g., supported

platforms)

•Sub-sections of data
• e.g., read-only
• Uninitialized

24

text
(executable code; read only)

data
(global and static variables)

heap
(malloc()’ed objects)

…

Typical C Program’s
Address Space

stack
(local variables inside functions)

…

Agenda

•Functions

•Loaders and the C Memory Layout

•Dynamic Memory Allocation

•C Generics
•C Library Functions

Malloc

•Allocates the requested number of uninitialized bytes
• Malloc does not care how you will use the allocated memory
• Assuming ‘size’ is very error-prone: use “sizeof(type) * N”

•Returns NULL on failure (e.g., run out of memory): always check!
26

An unsigned integer type: wide enough to
count the entire memory’s worth of bytes

ISO Standard 9899:2011

Dynamic Memory Allocation

•You can dynamically allocate anything that you can statically allocate

27

uint64_t *u = (uint64_t *)malloc(sizeof(uint64_t)));
if(u != NULL)
{

*u = 1;
u[0]++;
free(u);

}

Basic Objects

Array Objects
#define N (2 * 1024 * 1024)
uint64_t *arr = (uint64_t *)malloc(sizeof(uint64_t) * N));
if(arr != NULL)
{

*arr = 0;
arr[N - 1] = N - 1;
free(u);

}

Malloc’ing Pointers

•Dynamically allocating a pointer requires a pointer-to-pointer

28

struct my_struct
{

uint8_t u;
...

}

// pointer to a pointer-to-struct
struct my_struct **pps = (struct my_struct **)malloc(sizeof(struct my_struct*)));
if(pps != NULL)
{

// pointer-to-struct
*pps = (struct my_struct *)malloc(sizeof(struct my_struct)));
if(*pps != NULL)
{

(*pps)->u = 0;
free(*pps);

}
free(pps); // one free() for every successful malloc()

}

Friends of malloc()

•Helper functions:
• calloc(): also initialize the allocated bytes to ‘0’
• realloc(): change the size of a previously-malloc’d region

29

Realloc for Resizing

•Resizes a previously-allocated block at ptr to a new size
• Might require moving the block to a new location!
• Automatically copies the data and free’s the old block, if necessary

•On success:
• New pointer is valid
• Old pointer is invalid – do not try to use or free() it

•On failure:
• New pointer is NULL
• Old pointer is unchanged

30

void *realloc(void *ptr, size_t size);

void func(void)
{

uint64_t *u = (uint64_t *)malloc(sizeof(uint64_t));
...
uint64_t *v = realloc(u, sizeof(uint64_t) * 2);

}

Four Common Bugs with Malloc

31

Memory Leak
void func(void)
{

uint64_t *u = (uint64_t *)
 malloc(sizeof(uint64_t));
...
return;

}

Use After Free
void func(void)
{

uint64_t *u = (uint64_t *)
 malloc(sizeof(uint64_t));
free(u);
u[0] = 1;

}

Double Free
void func(void)
{

uint64_t *u = (uint64_t *)
 malloc(sizeof(uint64_t));
free(u);
free(u);

}

Incorrect Allocation Size
void func(void)
{

uint64_t *u = (uint64_t *)
 malloc(1);
u[0] = 0xffffffffffffffff;

}

All can cause a program crash or security vulnerability

Example: Use After Free

•Your code will usually crash some time later than the actual bug

32

void func(void)
{

uint64_t *u = (uint64_t *)malloc(sizeof(uint64_t));
if(u != NULL)
 free(u);

... // meanwhile, ‘u’ was reallocated to a different object

printf(“%lx”, u); // prints data from somewhere else in the program
}

void func(void)
{

uint64_t *u = (uint64_t *)malloc(sizeof(uint64_t));
if(u != NULL)
 free(u);

... // meanwhile, ‘u’ was NOT reallocated

printf(“%lx”, u); // crash trying to access memory at ‘u’
}

Example: Double-Free

•Your code will usually crash some time later than the actual bug

33

void func(void)
{

uint64_t *u = (uint64_t *)malloc(sizeof(uint64_t));
if(u != NULL)
 free(u);

... // meanwhile, ‘u’ was reallocated to a different object

if(u != NULL)
 free(u); // free’s somebody else’s memory

... // bad things happen: the other object will experience a use-after-free
}

Example: realloc() misuse

•Your code will usually crash some time later than the actual bug

34

void func(void)
{

uint64_t *u = (uint64_t *)malloc(sizeof(uint64_t));
...
uint64_t *v = (uint64_t *)realloc(u, sizeof(uint64_t) * 2);
// IF realloc failed, v == NULL; u == still valid
// IF realloc passeed, v == new memory; u == invalid

... // need to be careful to use the right pointer!
}

Avoiding Memory Bugs

Proactive measures:

1. Always initialize pointers to NULL

2. Always set pointers to NULL after free() or successful realloc()

3. Always check the results of malloc() and friends

4. Avoid magic numbers in the code for allocation/array sizes

Debugging tools:

1. GDB: line-by-line debugging

2. Valgrind: slows down your code, but checks for memory misuse
• Memory leaks
• Use-after-free
• Out of bounds accesses

35

CS 211: Intro to Computer Architecture
7.1: Dynamic Memory Management

Spring 2025 – Tuesday 4 March

Minesh Patel

	Default Section
	Slide 1: CS 211: Intro to Computer Architecture 7.1: Dynamic Memory Management
	Slide 2: Announcements
	Slide 3: Midterm Preparation
	Slide 4: The CSL and RUCATS are Both Hiring
	Slide 5: Reference Material
	Slide 6: A Simplified C Library Reference: manual.cs50.io
	Slide 7: Agenda
	Slide 8: Recap: C’s Type System
	Slide 9: Recap: A 64-bit Address Space
	Slide 10: Functions in Memory
	Slide 11: Code Lives in Memory, Too
	Slide 12: Function Pointers
	Slide 13: Function Pointer Syntax: Best Practice
	Slide 14: Agenda
	Slide 15: Loading a Program into Memory
	Slide 16: A C Program’s Address Space
	Slide 17: Sections of the Address Space
	Slide 18: Sections of the Address Space: text
	Slide 19: Sections of the Address Space: stack
	Slide 20: Aside: Variable Scope in C
	Slide 21: Aside: Two Types of Global Variables
	Slide 22: Sections of the Address Space: data
	Slide 23: Sections of the Address Space: heap
	Slide 24: Inspecting Sections of an Executable File
	Slide 25: Agenda
	Slide 26: Malloc
	Slide 27: Dynamic Memory Allocation
	Slide 28: Malloc’ing Pointers
	Slide 29: Friends of malloc()
	Slide 30: Realloc for Resizing
	Slide 31: Four Common Bugs with Malloc
	Slide 32: Example: Use After Free
	Slide 33: Example: Double-Free
	Slide 34: Example: realloc() misuse
	Slide 35: Avoiding Memory Bugs
	Slide 36: CS 211: Intro to Computer Architecture 7.1: Dynamic Memory Management

