CS 211: Intro to Computer Architecture
6.2: C Data Representation IV: Derived Types Cont.

Minesh Patel
Spring 2025 — Thursday 27 February

Policy on Disrespect

Respect your instructional staff.

* This includes all instructors, TAs, and tutors, including during recitations
and office hours, and at the CSL

* We will not tolerate disruptions to a healthy learning environment

* Continued disruptions may be reported to any or all of the following and
may result in being denied help in recitations and office hours
 RUPD
* Residents Life
* The Dean of Students

Announcements

*PA2 survey will be on Canvas

* Coming up next week:
* PA3 and WA4

* Exam information (TBA)
» ODS: please remember to contact ODS for special accommodations for the exam

Reference Material

* Today’s lecture partially draws inspiration from:

« CS 61C @ UC Berkeley (Prof. Dan Garcia

And Various C and Linux Reference Materials

cppreference.com

Page Discussion

C

C reference

€89, €95, €99, €11, €17, €23 | Compiler support €99, €23

Language Program utilities
Basic concepts Variadic functions
Keywiords Diagnostics library
Preprocessor q
Expressions Dynamic memory management
Declaration Strings library
Initialization Null-terminated strings:
Functions byte — muiltibyte — wide
Statements Date and time library
Headers Localization library

Type support Input/output library

Create account H Search |

Standard revision: Diff ¥ View View source History

Algorithms library
Numerics library
Common mathematical functions
Floating-peint environment (css)
Pseudo-random number generation
Complex number arithmetic (css)
Type-generic math)
Bit manipulation (c23
Checked integer arithmetic (c23)
Concurrency support library (c11)

N1570 Committee Draft — April 12, 2011

ISO/IEC 9899:201x

INTERNATIONAL STANDARD ©ISO/MEC

ISO/IEC 9899:201x

Programming languages — C

ADOTD 4T

A mp2099@ilab4: ~/cs211/expe X
MAN(1)

NAME

Manual pager utils

man - an interface to the system reference manuals

Manual e man(1) line 1 (press h for help or

to quit)

Linux Documentation

Search all of the Linux documentation available on this site:

Search

[[untersToTzT DURCH Google

Man Pages

p d' HOWTO Collection
ﬂ::i n,:’fn cEres Advanced Bash-Scripting Guide
EnAtet kil Bash Guide for Beginners
T Bugzilla Guide
LCLGETLIEL S Dive Into Python
Rl Bpacs Enterprise Volume Management System Users Guide
race explorer
Introduction to Linux
Linux Command-Line Tools Summary
Linux Kernel Module Programming_Guide
Linux with Mobile Devices
System Administrators' Guide

]

MAN(1)

https://cs61c.org/sp25/

Standards are Great, But...

SECOND EDITION

THE

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

SOFTWARE SERIES

https://m.media-amazon.com/images/l/51EyaJeebHL._SL1056_.jpg

ens Lustedt

https://www.manning.com/books/modern-c

K.N.KING

C PROGRAMMIN

A Modern Approach secono eoition

ol

http://knking.com/books/c2/cover.html

Agenda

evoid

*basic types
* char
*signed integers
*unsigned integers
 floating-point

*enumerated types

derived types
e structures
e pointers
e arrays
* unions
e functions

Arrays and Strings
*Array nuances

Unions

Pomter Fun with

1 1\

by Nick Parlante
This 1Is document 104 in the Stanford CS

Education Library — please see
cslibrary.stanford.edu

for this video, its associated documents,
and other free educational materials.

Copyright © 1999 Nick Parlante. See copyright
panel for redistribution terms.
Carpe Post Meridiem!

Recap: Pointer Example

void swap(int *pa, int *pb)
{
int temp = *pa;
*pa = *pb;
*pb = temp;

¥

void func(void)

{
int a =1, b = -1;
swap(&a, &b); // swaps a and b
}

&temp

&pa

&pb

&a

&b

temp

&a

&b

0x0000 0001

OXFFff_ffff

Recap: Arrays and Strings

*Arrays objects are a list of objects in memory

int8 t arr[4] = {-2, -1, 0, 1};

&arr

ints_t Object {

(unnamed)

Oxfe

Oxff

0x00

ox01

Array Object

(identifier = “arr”)

char str[] = "cs211";

&str =

» Array Object

(identifier = “str”)

char Object {

(unnamed)

“null terminator” for C strings
(C library functions expect this)

Indexing C Arrays

* Array indexing is very straightforward

void func(void) . char Object
{ &str :
char c[3] = {'c', 's', '"\@’}; "'c' <+ c[@] /
's' «— c[1]

printf("%c%c", c[0], c[1]);

Ox00 | «— c[2]

printf("%s"}, c);

) t
Special format spe'cifier for C strings
(expects the null termination)

Size vs. Length of an Array

*Size: total bytes in memory
* Length: number of elements

void func(void)
{ int32 t arr[4] = {-2, -1, 0, 1};
int size = sizeof(arr); // 16 (bytes)
int length = sizeof(arr) / sizeof(arr[0]);
// 16 (bytes) / 4 (bytes) = 4 elements
}

&arr

oxffff_fffe

OxFFff _fff

0XxX0000_0000

0x0000_ 0001

1

Under the Hood, Indexing is Just Pointers

* Array identifiers act like pointers (to the first element)

arr

uint8 t ao
uint8 t al

uint8 t arr[4] = {0, 1, 2, 3};

Oxfe

*arr; // == arr[0]

Oxff

*(arr + 1); // == arr[1]

0x00

ox01

* Element access is just shorthand for pointer arithmetic

uint8 t arr[N]

arr[9] €= *3ppr

arr[1] €= *(arr + 1)

arr[N-1] €= *(grr + N - 1)

uint8 t *arr

12

C Strings

C Strings (have null termination)

char *str = "cs211";

char str[6] = "cs211";

char str[] = "cs211";

NOT a C String

char str[] = {‘c’, ¢s’,

(2.’, (1), (1)’ (\e)};

char str[] = {‘c’, ‘s’, ‘2°,

fl)’

17}

str

printf("%s", str);

str

_/

printf(j%é{, str);

7\

13

Pointer Arithmetic

Element access is just shorthand for pointer arithmetic
p[n] & *(p + n)

* Adding/subtracting integers operates on units of 1

uinté4 t u
u=u+ 1;

=@;
// u =1

* Adding/subtracting pointers operates on units of "sizeof(pointee)"

uinte4 t *p = 0;
p=p+1; // p =28

ll
]

&plé]
8p[1] b[63:0]
7 b[63:0]

!
0o

uint32 t *p = 0;
p=p+1; // p=4

uintle t *p = 0;
p=p+1; // p=2

0

&ple]
b[31:0]

4

&p[1]

b[31:0]

&p[0] = O

&p[1] = 2 b[15:0]

b[15:0]

14

Example: Linked List with Pointer Arithmetic

Singly-Linked List

struct node head

{ NULL
uint8 t data; dataﬂ dataH data'}/
struct node *next; next next next

}

#define N 100
struct node n[N]; // array of statically-allocated nodes

for(int 1 = @ 1 < N; i++)

{

struct node *this = n + 1i; // &n[i]

this->data = (uint8 t)i;

this->next = (i == N - 1) 2 NULL : (n + i + 1); // &n[i + 1]
}

data
next

data
next

data
next

——
s91Aq (Spou 12NJ1S)J03ZTS

15

Example: “argv”

netid@ilab:~/cs211$./pa3 two

{
}

// code

argv is an array of pointers

sizeof(argv) won’t work

. .. P (compiler doesn’t know the length)
int main(int argc,] char *argv[]

argv[n] are Cstrings

—p argv[o]

argv
char * —
argv + 1
char * —
argv + argc
NULL

~> argv[1]

('t)

CWJ

CO.’

f\@)

f/)

(p.’

(3)

f\e)

16

Multidimensional Arrays

* The compiler “does the right thing” for multidimensional arrays

uint8 t mat_1d[]
// sizeof(matld) =

= {@J 1, 2, 3};
4

uint8 t mat_2d[][2] = {{9, 1}, {2, 3}};
// sizeof(mat2d)==
mat_2d
mat_2d @X@@
mat _2d[0] - ox01
mat_2d + 1 mat_2d + 1
mat 2d[1] — 0x02
0x03

mat_1d

0x00

Ox01

Ox02

0x03

17

Example: Flattened Matrix

Logical Organization

#tdefine N 100
#tdefine M 100

int print mat(uint32 t *mat)

{

for(int n = ©; n < N; n++) // rows

for(int m = ©; m < M; m++) // cols
printf(mat[m + n * M]); // *(mat + m+ n * M)

}
int main(int argc, char *argv[])
{

uint32 t mat[N * M] = {@}; // statically-allocated array

print_mat(mat);
}

0 1 2 M-1
M M+1 | M+2 2M-1
2M | 2M+1 | 2M+2 3M-1
(N-1)*M (N;li*M (N;l%*M NM - 1

Physical Organization

mat
mat + 1

mat + N*M-1

mat[0]

mat[1]

mat[N*M-1]

18

Agenda

evoid

*basic types
* char
*signed integers
unsigned integers
 floating-point

*enumerated types

derived types
e structures
e pointers
*arrays
* unions
 functions

Pointers

*Basics (continued)
*Why pointers?
*Pointer nuances

Arrays and Strings
*Array nuances

19

Caution: Array Off-By-One Errors

int array[10];

for(int i = @; i++)
array[i] = ©;

I

Array “out of bounds” access
» Cdoes NOT check for you!
» Undefined behavior: can be hard to debug

* Avoid magic numbers - error prone and hard to read/change

#tdefine LEN 10

int array[LEN];
for(int i = @; i < LEN; i++)
array[i] = 0;

CVEs on Arrays

CVE-2024-5143

CVE-2024-8408

CVE-2024-7721

CVE-2024-6606
CVE-2024-5991

CVE-2025-21680

CVE-2025-21643

CVE-2024-58015

CVE-2024-58000

CVE-2024-57996

ec 28 89 54 24 1c 48 8574 24 10 [18.881766] RSP: 002b:00007ffcdd00fad8 EFLAGS: 00000246 ORIGmfﬁ’da RBX:
00007ffcdd010db8 RCX: 000000000044a957 [18.882507] RDX: 0000000000000000 RSI: 00007ffcdd00fb70 RDI: 0000000000000003 [18.885037] RBP: 00007ffcdd010bcO ROS:
000000000703c770 R0OS: 000000000703c7c0 [18.887203] R10: 0000000000000080 R11: 0000000000000246 R12: 0000000000000001 [18.888026] R13: 00007ffcdd010da8 R14:
00000000004ca7d0 R15: 0000000000000001 [18.888395] </TASK> [18.888610] ---[end trace]---

In the the following vulnerability has been resclved: pktgen: Avoid out-of-bounds access in get_imix_entries Passing a sufficient amount of imix entries leads to invalid
access to the pkt_dev->imix_entries array because of the incorrect boundary check. UBSAN: array-index-out-of-bounds in net/core/pktgen.c:874:24 index 20 is out of range for type
"imix_pkt [20]' CPU: 2 PID: 1210 Comm: bash Not tainted 6.10.0-rc1 #121 Hardware name: QEMU Standard PC (i440FX + PIIX, 1996) Call Trace: <TASK> dump_stack_Ivl
lib/dump_stack.c:117 __ubsan_handle_out_of_bounds libfubsan.c:429 get_imix_entries net/core/pktgen.c:874 pktgen_if_write net/core/pktgen.c:1063 pde_write fs/proc/inode.c:334
proc_reg_write fs/proc/inode.c:346 vfs_write fs/read_write.c:593 ksys_write fs/read_write.c:644 do_syscall_64 arch/x86/entry/common.c:83 entry_SYSCALL_64_after_hwframe
arch/x86/entry/entry_64.5:130 Found by Linux Verification Center (linuxtesting.org) with SVACE. [fp: allow to fill the array completely; mincr changelog cleanup]

In th the following vulnerability has been resolved: netfs: Fix kernel async DIO Netfslib neads to be able to handle kernel-initiated asynchronous DIO that is supplied
with a bio_vec[] array. Currently, because of the async flag, this gets passed to netfs_extract_user_iter() which throws a warning and fails because it only handles IOVEC and UBUF
iterators. This can be triggered through a combination of cifs and a loopback blockdev with something like: mount //my/cifs/share /foo dd if=/dev/zero of=/foo/m0 bs=4K count=1K
losetup --sector-size 4096 --direct-io=on /dev/loop2046 /foo/m0 echo hello >/dev/loop2046 This causes the following to appear in syslog: WARNING: CPU: 2 PID: 109 at
fs/netfs/iterator.c:50 netfs_extract_user_iter+0x170/0x250 [netfs] and the write to fail. Fix this by removing the check in netfs_unbuffered_write_iter_locked() that causes async
kernel DIO writes to be handled as userspace writes. Note that this change relies on the kernel caller maintaining the existence of the bio_vec array (or kvec[] or folio_queue) until the
op is complete.

Issue summary: Use of the low-level GF(2-m) elliptic curve APIs with untrusted explicit values for the field polynomial can lead to out-of-bounds memory reads or writes. Impact
summary: Out of bound memory writes can lead to an application crash or even a possibility of a remote code execution, however, in all the protocals involving Elliptic Curve
Cryptography that we're aware of, either only "named curves" are supported, or, if explicit curve parameters are supported, they specify an X9.62 encoding of binary (GF(2~m)) curves
that can't represent problematic input values. Thus the likelihood of existence of a vulnerable application is low. In particular, the X9.62 encoding is used for ECC keys in X.509
certificates, so problematic inputs cannot occur in the context of processing X.509 certificates. Any problematic use-cases would have to be using an "exotic" curve enceding. The
affected APIs include: EC_GROUP_new_curve_GF2m(), EC_GROUP_new_from_params(), and various supporting BN_GF2m_#*() functions. Applications working with "exotic" explicit
binary (GF(2-~m)) curve parameters, that make it possible to represent invalid field polynomials with a zero constant term, via the above or similar APIs, may terminate abruptly as a
result of reading or writing outside of array bounds. Remote code execution cannot easily be ruled out. The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue.

A vulnerability was found infLinksys WRT54G 4.21.5.Qt has been rated as critical. Affected by this issue is the function validate_services_port of the file /fapply.cgi of the component
POST Parameter Handler. THET argument services_array leads to stack-based buffer overflow. The attack may be launched remotely. The exploit has been disclosed
to the public and may be used. The Vendor was contacted early about this disclosure but did not respond in any way.

The HTMLS Video Player &#£8211; mp4 Video Player Plugin and Blockplugin for WordPresdlis vulnerable to unauthorized modification of data due to a missing capability check on the
'save_password' function in all versions up to, and including, 2.5.34. This makes It possible for authenticated attackers, with Subscriber-level access and above, to set any options that
are not explicitly checked as false to an array, including enabling user registration if it has been disabled.

Clipbeard code failed to check the index on an array access. This could have led to an out-of-bounds read. This vulnerability affect 128 and Thunderbird < 128.

In function MatchDomainName(), input param str is treated as a NULL terminated string despite being user provided and unchecked. Specifically, the function X509_check_host() takes
in a pointer and length to check against, with no requirements that it be NULL terminated. If a callgragas-attempting to do a name check on a non-NULL terminated buffer, the code
would read beyond the bounds of the input array until it found a NULL terminator.This issue affectdwolfSSLE through 5.7.0.

In the the following vulnerability has been resolved: wifi: ath12k: Fix for out-of bound access error Selfgen stats are placed in a buffer using print_array_to_buf_index()
function. Array length parameter passed to the function is too big, resulting in possible out-of bound memory error. Decreasing buffer size by one fixes faulty upper bound of passed
array. Discovered in coverity scan, CID 1600742 and CID 1600758

In the the following vulnerability has been resolved: io_uring: prevent reg-wait speculations With *ENTER_EXT_ARG_REG instead of passing a user pointer with
arguments ror the waiting loep the user can specify an offset into a pre-mapped region of memory, in which case the [offset, offset + sizeof(io_uring_reg_wait)) will be intepreted as
the argument. As we address a kernel array using a user given index, it'd be a subject to speculation type of exploits. Use array_index_nospec() to prevent that. Make sure to pass not
the full region size but truncate by the maximum offset allowed considering the structure size.

In the the following vulnerability has been resclved: net_sched: sch_sfqg: don't allow 1 packet limit The current implementation does not work correctly with a limit of 1.
iproute/ actually checks for this and this patch adds the check in kernel as well. This fixes the following syzkaller reported crash: UBSAN: array-index-out-of-bounds in
net/sched/sch sfn.c:210:6 index 65535 iz out of ranae for tvne 'struct sfn headl1281' CPU: 0 PIND: 2569 Comm: svz-execufor101 Not tainted 5.10.0-smn-DFV #1 Hardware name:

21

Array vs. Pointer Identifiers

Array identifiers refer to
one array object

\

uint8 t arr[3] = {1, 2, 3};
uint8_t *p = &arr;

y

Pointer identifiers refer to
one pointer object

&arr

&arr

0x01

0x02

0x03

Pointer object

(holds memory addresses)
sizeof(p) == 8

Array object
(sequence of other objects)
sizeof(arr) ==
sizeof(arr[@]) ==

22

Pointer Arithmetic on Arrays

uint8 t arr[3] = {1, 2, 3};
uint8 t *p = &arr;

Array Objects are NOT Pointers

arr++; // illegal

Arrays and Pointers-to-Arrays Are Different

uint8 t *p = arr;
p++; // p = &arr|[0]

uint8 t (*pa)[3] = &arr;
pa++; // pa = &arr[4] (0OO0B)

&arr

&arr

0x01

0x02

0x03

Pointer object

(holds memory addresses)
sizeof(p) == 8

Array object
(sequence of other objects)
sizeof(arr) ==
sizeof(arr[@]) ==

23

Demotion to Pointers

* Array objects are passed as pointers when passed to a function

void func(int *arr);

} Equivalent

void func(int arr[]);

int main(int argc, char *argv[]); }E valent
quivaien

int main(int argc, char **argv);

* Function arguments lose the array type information
e Can no longer use sizeof(arr)
* Need to explicitly pass the array length or use a sentinel to mark the end

26

Agenda

evoid

*basic types
* char
*signed integers
unsigned integers
 floating-point

*enumerated types

derived types
e structures
e pointers
e arrays
* unions
 functions

Arrays and Strings

*Array nuances

Unions

27

Union Types

A union type describes an overlapping nonempty set of member objects

union my_union

{
uint32 t 1i;
float f;

s

union my_union u;
u.i = 1; ———”’———J————
u.f = 1; -._____5555
/] ...

&u

&u

0x0000_ 0001

Ox3180_0000

ISO Standard 9899:2011 6.2.5.20

| Same memory location
(updates overwrite each other)

28

Union Example Code

union my_union u;

union my_union

{
uint32 t 1i;
float f;

s

// sizeof(u) ==

u.i = 1;
printf(“%x %f”, u.i, u.f);

u.f

printf(“%x %f”, u.i, u.f);

A mp2099@ilab4: ~fcs211/expe X + - O

$ /common/system/ris
culfblnfrlscuﬁu unknown—-elf-gcc -o union union.c

$./union
1 0.p0BREG
3800000 1.0600080

$ |

29

Unions vs. Pointers

*You can do the same thing by type casting pointers

union my_union

{
uint32 t i;
float f;

s

union my_union u;

uint32 t 1 = 1;
printf(“%f”, *(float *)&1i);

float £ = 1;
printf(“%x”, *(uint32 t *)&f);

* However: unions guarantee that the object can represent the type
*Unions are generally safer than type casting pointers

30

[Demo] Examining Memory in GDB

Terminal Emulator 1:

netid@ilab4:~/cs211/experiment$ /common/system/riscv64i/grun pointer

same ilab machine! same directory!

Terminal Emulator 2:
netid@ilab4:~/cs211/experiment$ /common/system/riscv64i/gdb pointer

start or run - start the session

break <location> - set a breakpoint
* b main - break at the main function
* b main.c:11 - break there, for example

p <variable> - print a variable
* p/x <variable> - print in hex
* p/t <variable> - print in binary

x <address> - print memory at the address
* x/10b <address> - print 10 bytes
* x/10b <variable> - get the address from a variable

layout <command> - change the GDB layout

mp2099@ilabd: ~fes2M1fexpe X + - —]

: $ /common/system/riscvédi/grun pointer
cd /common/home/mp2099/cs211/experiment

['/usr/bin/qemu-riscved', '-g', '/common/home/mp2099/grun.sock2', '/common/ho
me/mp2099/cs211/experiment/pointer']

! @ 0x40008002a7

A mp2099@ilab4: ~fcs211/expe X + o~

—pointer.c
<stdlib.h>
<stdio.h>

(argc, *argv[])

c="'l" // ascii 0x21
*p = &c; // address of c

1
2
3
L
5
6
7
8
9
(¢]
1

1
1

}

remote Thread 1.3921658 (src) In: main
(gdb) p/x c
= B0x21
(gdb) p/x p
= Ox4PeE8e02a7
(gdb) x/16b p

PC: 0x10210

0x21 oxa7 0x02 0x80 0x00 oxue 0xeoe 0x00
3 0x00 0xB0
(gdb) x/16b 0x40008002a7
3 0x21 oxa7 0x02 0x806 0x00 oxue 0x00 0x00
0x00 0x00

(gdb) | : 31

Next Week

* Functions
* Memory layout of a C program
* Dynamic memory allocation

32

CS 211: Intro to Computer Architecture
6.2: C Data Representation IV: Derived Types Cont.

Minesh Patel
Spring 2025 — Thursday 27 February

	Default Section
	Slide 1: CS 211: Intro to Computer Architecture 6.2: C Data Representation IV: Derived Types Cont.
	Slide 2: Policy on Disrespect
	Slide 3: Announcements
	Slide 4: Reference Material
	Slide 5: Standards are Great, But…
	Slide 6: Agenda
	Slide 7
	Slide 8: Recap: Pointer Example
	Slide 9: Recap: Arrays and Strings
	Slide 10: Indexing C Arrays
	Slide 11: Size vs. Length of an Array
	Slide 12: Under the Hood, Indexing is Just Pointers
	Slide 13: C Strings
	Slide 14: Pointer Arithmetic
	Slide 15: Example: Linked List with Pointer Arithmetic
	Slide 16: Example: “argv”
	Slide 17: Multidimensional Arrays
	Slide 18: Example: Flattened Matrix
	Slide 19: Agenda
	Slide 20: Caution: Array Off-By-One Errors
	Slide 21: CVEs on Arrays
	Slide 22: Array vs. Pointer Identifiers
	Slide 23: Pointer Arithmetic on Arrays
	Slide 26: Demotion to Pointers
	Slide 27: Agenda
	Slide 28: Union Types
	Slide 29: Union Example Code
	Slide 30: Unions vs. Pointers
	Slide 31: [Demo] Examining Memory in GDB
	Slide 32: Next Week
	Slide 33: CS 211: Intro to Computer Architecture 6.2: C Data Representation IV: Derived Types Cont.

