CS 211: Intro to Computer Architecture
6.1: C Data Representation lll: Derived Types Cont.

Minesh Patel
Spring 2025 — Tuesday 25 February

Announcements

*PA2 due Wednesday, Feb 23 @ 23:59

* We will have a post-PA2 survey during the next class

* PA3 and WA4 to be released at the end of the week

Reference Material

* Today’s lecture partially draws inspiration from:

« CS 61C @ UC Berkeley (Prof. Dan Garcia

And Various C and Linux Reference Materials

cppreference.com

Page Discussion

C

C reference

€89, €95, €99, €11, €17, €23 | Compiler support €99, €23

Language Program utilities
Basic concepts Variadic functions
Keywiords Diagnostics library
Preprocessor q
Expressions Dynamic memory management
Declaration Strings library
Initialization Null-terminated strings:
Functions byte — muiltibyte — wide
Statements Date and time library
Headers Localization library

Type support Input/output library

Create account H Search |

Standard revision: Diff ¥ View View source History

Algorithms library
Numerics library
Common mathematical functions
Floating-peint environment (css)
Pseudo-random number generation
Complex number arithmetic (css)
Type-generic math)
Bit manipulation (c23
Checked integer arithmetic (c23)
Concurrency support library (c11)

N1570 Committee Draft — April 12, 2011

ISO/IEC 9899:201x

INTERNATIONAL STANDARD ©ISO/MEC

ISO/IEC 9899:201x

Programming languages — C

ADOTD 4T

A mp2099@ilab4: ~/cs211/expe X
MAN(1)

NAME

Manual pager utils

man - an interface to the system reference manuals

Manual e man(1) line 1 (press h for help or

to quit)

Linux Documentation

Search all of the Linux documentation available on this site:

Search

[[untersToTzT DURCH Google

Man Pages

p d' HOWTO Collection
ﬂ::i n,:’fn cEres Advanced Bash-Scripting Guide
EnAtet kil Bash Guide for Beginners
T Bugzilla Guide
LCLGETLIEL S Dive Into Python
Rl Bpacs Enterprise Volume Management System Users Guide
race explorer
Introduction to Linux
Linux Command-Line Tools Summary
Linux Kernel Module Programming_Guide
Linux with Mobile Devices
System Administrators' Guide

]

MAN(1)

https://cs61c.org/sp25/

Standards are Great, But...

SECOND EDITION

THE

PROGRAMMING
LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

SOFTWARE SERIES

https://m.media-amazon.com/images/l/51EyaJeebHL._SL1056_.jpg

ens Lustedt

https://www.manning.com/books/modern-c

K.N.KING

C PROGRAMMIN

A Modern Approach secono eoition

ol

http://knking.com/books/c2/cover.html

Recommended GCC Warning Options

:mzi’ir‘a Enables additional (mostly useful) warnings

-Werror Treat all warnings as errors (don'’t create the executable)

-Wshadow Warns when you use the same name for variables in different scopes
-pedantic | Follow the Cstandard strictly (often helpful, but very... pedantic)

-Wenum-compare

Example of Variable Shadowing

Warn about a comparison between values of different enumerated types. In))
i) N . void func(int a)
C++ enumerated type mismatches in conditional expressions are also {
diagnosed and the warning 1s enabled by default. In C this warning 1s enabled for(uint32 t a = 0; a < 10; a++)
o] e
printf(“%d”, a); // which a?
-Wenum-conversion }
}

Warn when a value of enumerated tvpe 1s implicitly converted to a different

enumerated type. This warning 1s enabled byl— L-Jextralin C.

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

Agenda

evoid

*basic types
* char
*signed integers
*unsigned integers
 floating-point

*enumerated types

derived types
*structures
e pointers
*arrays
*unions
 functions

*Pointers
Basics (continued)
*Why pointers?
*Pointer nuances

Arrays and Strings

*Array nuances

Recap: Pointers “Point” to Other Objects

9x103

u = Oxff

Ox104

uint8 t u = oxfTf;
uint8 t *p = &u;

Pointer types are

Ox103 . .
objects in memory

©
|

Pointers contain the
memory address
of other objects

Pointer Example

0x100

b = NULL
u = Oxffff

##tinclude <stdlib.h> ox108

void func(void)

{

uintl6 t *p = NULL; // NULL = pointing nowhere | ° Dedigunydgniﬁerg e
uintl6 t u = OxFFFfu; ype pointer o uintie_

* Initialized to NULL
q

* i.e, pointing to “nothing”

Pointer Example

0x100
#include <stdlib.h> C@mg‘p = cuins GhdiEl
u = OxFfff
void func(void) :
{
uintl6_t *p = NULL; // NULL = invalid address
uintle t u = Oxffffu;
p = &u;
printf(“sp %x %x\n”, p, *p, u); « Setptothe address of u
— * “ppointstou”

* Print the value pointed to by p
* *p:“dereferencing the pointer”

Pointer Example

#include <stdlib.h>

void func(void)

{
uintl6 t *p = NULL; // NULL
uintle t u = Oxffffu;
p = &u;
printf(“%p %x %x\n”, p, *p,
u >>= 4;
printf(“%p %x %x\n”, p, *p,

q
}

= invalid address

u);

u);

ox100
C-p = NULLE Ox108
ox108

U = Ox0fff

P still points to u

10

Pointer Example

#include <stdlib.h>

void func(void)

{
uintl6_t *p = NULL; // NULL
uintle t u = Oxffffu;
p = &u;
printf(“%p %x %x\n”, p, *p,
u >>= 4,
printf(“%p %x %x\n”, p, *p,
*p >>= 4;

pPrintf(“%p %x %X\n”, p, *p,
}

= invalid address

u);

u);

u);

ox100
C-p = NULLE Ox108
ox108

u = 0x00ff

Changes the value pointed to by p

1

Interpreting Memory Locations

*Memory is just an array of bytes

* A memory location can hold any type of object

OXffo

ff

tf *(uint8_t *)(oxffo) = oxff;

g *(Uuintl6_t *)(OxffO) = OXFfff;

g #(Uint32_t *)(Oxffo) = OxFFFf _fFFf;

£f | | *(uinte4_t *)(oxffo) = oxffff_ffff ffff_ffff;
ff

This will compile + run, but reading from invalid

memory locations is undefined behavior

#include <stdlib.h=>
#include <stdio.h>
#include <stdint.h>
int main(int argc, char *argv[])
I
printf("%x\n", *(uint8_t *)0x102);
return EXIT_SUCCESS;
$ /common/system/riscvi

/sy /x:
n-elf-gcc —-o pointer2 pointer2.c
$./pointer2

/bin/riscvéld-unknow

Segmentation fault

$ |

* Types tell the compiler how to interpret those bytes
* Beware of endianness ©

12

Pointer Example 2

#tinclude <stdlib.h>
#tinclude <stdio.h>
#include <stdint.h>

int main(int argc, char *argv([])

> {

0x100

ox104

Memory

int argc

char *argv][]

13

Pointer Example 2

#tinclude <stdlib.h>
#tinclude <stdio.h>
#include <stdint.h>

int main(int argc, char *argv([])

{
—

uint8 t u8 = Oxff;

0x100

ox104

Oxloc

Memory

int argc

char *argv][]

uint8_t u8

14

Pointer Example 2

#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
int main(int argc, char *argv([])
{
uint8 t u8 = Oxff;
uint8 t *p u8 = &u8;
printf("as int: %d @ %p\n",
}

(int)*p_u8, p u8);

$ /common/system/riscvi/bin
/riscve6l- unknown —elf-gcc -o pointer_types pointer_types.c

./pointer_types

as int: 255 @ OxU4PEOE80030F

9x100

9x104

Ox10c
ox1od

Memory

int argc

char *argv|]

uint8 t u8

uint8 t *p u8

15

Pointer Example 2

#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
int main(int argc, char *argv([])
{
uint8 t u8 = Oxff;
uint8 t *p u8 = &u8;
printf("as int: %d @ %p\n", (int)*p u8, p_u8);
int8 t *p i8 = (int8 t *)p_u8;
printf("as int: %d @ %p\n", (int)*p _i8, p_1i8);
---.)-
}

$ /common/system/riscvi/bin
/riscve6l- unknown —elf-gcc —o pointer_types pointer_types.c

./pointer_types
as int: 255 @ OxUOOE800306Ff
as int: -1 @ Ox4OPE80O30F

9x100

9x104

Ox10c
ox1od

Ox111

Memory

int argc

char *argv|]

uint8 t u8

uint8 t *p u8

int8_t *p_i8

16

Agenda

evoid

*basic types
* char
*signed integers
*unsigned integers
 floating-point

*enumerated types

derived types
*structures
e pointers
*arrays
*unions
 functions

*Pointers
*Basics (continued)
*Why pointers?
*Pointer nuances

Arrays and Strings

*Array nuances

17

Passing Parameters in C

* C function arguments are always copies rather than the original object
» Call by value: arguments are copies of the original object(s) <= C
* Call by reference: arguments refer to the original object(s) <= NotC

Modifying Copies of {a, b Modifying the Original {a, b
)
void swap(int a, int b) void swap(int *a, int *b)
{ {
int temp = a; int temp = *aj;
a =b; Copy of an *a = *b;
b = temp; int object *b = temp; .Copy Of“fm
} } int * object
void func(void) void func(void)
{ {
int a =0, b = 1; int a =0, b =1;
swap(a, b); // does nothing int *p_a = &a, *p b = &b;
} swap(p_a, p_b); // swaps a and b
}

Pointer Use-Case 1: Passing Parameters

 Mutability: pointers emulate passing by reference

void swap(int a, int b) void swap(int *a, int *b)
{ {

int temp = a; int temp = *a;

a = b; *a = *b;

b = temp; *b = temp;
} }

* Performance: Pointers let us avoid copying gigantic objects every time

void func @(struct big data s); void func @(struct big data *s);

Copying: entire object (e.g., 100 GB) Copying: pointer object (e.g., 8B)

Pointer Use-Case 2: Memory Management
*So far, we've relied on the compiler to create/destroy objects

Static Memory Allocation

void func(int print)
{
if(print != 0)
{
uint32 t u = @; // compiler creates object ‘u’
printf("%d", u); // we use the object
} // compiler destroys ‘u’ (out of scope)
}

* Unfortunately, we don’t always know our objects at compile time
* Maybe dependent on runtime inputs (e.g., modify a data structure, read a file)

* Maybe we don’t know an object’s type
20

Pointer Use-Case 2: Dynamic Memory Management

 Dedicated functions malloc()/free() to create/destroy objects of size N

void *malloc(size t size);

void free(void *ptr);

Static Memory Allocation

{

void func(void)

// compiler allocates the object
uint32 t uj;

// use the object
u= 0;
u=u+1;

} // compiler destroys u (out of scope)

Description Description
2 Themalloc function allocates space for an object whose size is specified by size The free function causes the space pointed to by ptr to be deallocated
ISO Standard 9899:201x

Dynamic Memory Allocation

void func(void)

{
// programmer allocates object
uinté4 _t *p = (uint64_t *)malloc(sizeof(uint64 t));
// use your object
*p = 0;
p=*p + 15
free(p); // programmer destroys object
}

21

Pointer Use-Case 3: Low-Level Programming

* Many CPU features are configured via hardwired memory locations
* Initializing (booting) the system
* Configuring hardware/software policies
* Interfacing with devices (e.g., accelerators, peripherals, I/O)

X86 “System Address Map” on Bootup

start end size description type

Real mode address space (the first MiB)

0x00000000 | 0x000003FF |1 KiB Real Mode IVT (Interrupt Vector Table)

unusable in real mode
0x00000400 | 0x000004FF | 256 bytes BDA (BIOS data area)
0x00000500 | 0x00007BFF | 29.75 KIB Conventional memaory

640 KiB RAM {"Low memory™)

0x00007C00 | 0x00007DFF | 512 bytes Your OS BootSector usable memory
0x00007E00 | 0x0007FFFF | 480.5 KIiB Conventional memaory
0x00080000 | Ox0009FFFF | 128 KiB EBDA (Extended BIOS Data Area) partially used by the EBDA
Ox000A0000 | Ox000BFFFF | 128 KiB Video display memory hardware mapped

0x000C0000 | 0xO00CTFFF | 32 KiB (typically) | Video BIOS
384 KiB System / Reserved ("Upper Memory")
0x000C&000 | 0xO0DEFFFF | 160 KiB (typically) BIOS Expansions ROM and hardware mapped / Shadow RAM

Ox000F0000 | 0x000FFFFF | 64 KiB Motherboard BIOS

https://wiki.osdev.org/Memory_Map_(x86)

Caution: Pointer Bugs

* Pointers are powerful, but also a huge source of real-world bugs and vulnerabilities

Search CVE List Downloads Data Feeds Update a CVE Record Request CVE IDs

TOTAL CVE Records: 240830

NOTICE: Transition to the all-new CVE website at WWW.CVE.ORG and CVE Record Format JSON are underway.

NOTICE: Support for the legacy CVE download formats ended on June 30, 2024.
New CVE List download format is available now on CVE.ORG.

Search Results

|There are 5283 CVE Records that match your search.

Name Description
CVE-2025-27113 libxml2 before 2.12.10 and 2.13.x before 2.13.6 has a NULL pointer dereference in xmlPatMatch in pattern.c.
CWE-2025-25475 A NULL peinter dereference in the compenent /libsrc/derleccd.cc of DCMTK v3.6.9+ DEV allows attackers to cause a Denial of Service (DoS) via a crafted DICOM file.
CWE-2025-25473 FFmpeg git master before commit c08d30 was discovered to contain a NULL peinter dereference via the compenent libavformat/mov.c.
CVE-2025-25471 FFmpeg git master before commit fd1772 was discovered to contain a NULL pointer dereference via the component libavformat/mov.c.

CVE-2025-24483 NULL pointer dereference vulnerability exists in Defense Platform Home Edition Ver.3.9.51.x and earlier. If an attacker provides specially crafted data to the specific process of the Windows system where the product is running, the
system may cause a Blue Screen of Death (BSOD), and as a result, cause a denial-of-service (DoS) condition.

CVE-2025-24177 A null pointer dereference was addressed with improved input validation. This issue is fixed in macOS Sequeia 15.3, 105 18.3 and iPadOS 18.3. A remote attacker may be able to cause a denial-of-service.

CVE-2025-24031 PAM-PKCS#11 is a Linux-PAM login module that allows a X.509 certificate based user login. In versions 0.6.12 and prior, the pam_pkcs11 module segfaults when a user presses ctrl-c/ctrl-d when they are asked for a PIN. When a
user enters no PIN at all, “pam_get_pwd" will never initialize the password buffer pointer and as such “cleanse” will try to dereference an uninitialized pointer. On my system this pointer happens to have the value 3 most of the
time when running sudo and as such it will segfault. The most likely impact to a system affected by this issue is an availability impact due to a daemon that uses PAM crashing. As of time of publication, a patch for the issue is
unavailable.

CWVE-2025-24014 Vim is an open source, command line text editor. A segmentation fault was found in Vim before 9.1.1043. In silent Ex mode {-s -e), Vim typically doesn't show a screen and just operates silently in batch mode. However, it is still
possible to trigger the function that handles the scrolling of a gui version of Vim by feeding some binary characters to Vim. The function that handles the scrolling however may be triggering a redraw, which will access the
ScreenlLines pointer, even so this variable hasn't been allocated (since there is no screen). This vulnerability is fixed in 9.1.1043.

CVE-2025-21697 In the Linux kernel, the following vulnerability has been resclved: drm/v3d: Ensure job pointer is set to NULL after job completion After a job completes, the corresponding pointer in the device must be set to NULL. Failing to do so
triggers a warning when unleading the driver, as it appears the job is still active. To prevent this, assign the job pointer to NULL after completing the job, indicating the job has finished.

CWE-2025-21695 In the Linux kernel, the following vulnerability has been resclved: platform/x86: dell-uart-backlight: fix serdev race The dell_uart_bl_serdev_probe() functicn calls devm_serdev_device_open() before setting the client cps via
serdev_device_set_client_ops(). This ordering can trigger a NULL pointer dereference in the serdev controller's receive_buf handler, as it assumes serdev->ops is valid when SERPORT_ACTIVE is set. This is similar to the issue fixed
in commit 5e700b384ecl ("platform/chrome: cros_ec_uart: properly fix race condition") where devm_serdev_device_open() was called before fully initializing the device. Fix the race by ensuring client ops are set before enabling
the port via devm_serdev_device_open(). Note, serdev_device_set_baudrate() and serdev_device_set_flow_control() calls should be after the devm_serdev_device_open() call.

CVE-2025-21688 In the Linux kernel, the following vulnerability has been resolved: drm/v3d: Assign job pointer to NULL before signaling the fence In commit e4b5ccd392b9 ("drm/v3d: Ensure job pointer is set to NULL after job completion™), we
intreduced a change te assign the job pointer to NULL after completing a job, indicating job completion. However, this approach created a race condition between the DRM scheduler workqueue and the IRQ execution thread. As scon
as the fence is signaled in the IRQ execution thread, a new job starts to be executed. This results in a race condition where the IRQ execution thread sets the job pointer to NULL simultaneously as the “run_job()" function assigns a
new job to the pointer. This race condition can lead to a NULL pointer dereference if the IRQ execution thread sets the job pointer to NULL after “run_job()" assigns it to the new job. When the new job completes and the GPU emits
an interrupt, “v3d_irg()" is triggered, potentially causing a crash. [466.310099] Unable to handle kernel NULL peinter dereference at virtual address 00000000000000c0 [466.318928] Mem abort info: [466.321723] ESR =
0x0000000096000005 [466.325479] EC = 0x25: DABT (current EL), IL = 32 bits [466.330807] SET = 0, FnV = 0 [466.333864] EA = 0, S1PTW = 0 [466.337010] FSC = 0x05: level 1 translation fault [466.341500] Data abort
info: [466.344783] ISV = 0, ISS = 0x00000005, ISS2 = 0x00000000 [466.350285] CM = 0, WnR = 0, TnD = 0, TagAccess = 0 [466.355350] GCS = 0, Overlay = 0, DirtyBit = 0, Xs = 0 [466.360677] user pgtable: 4k pages, 39-
bit VAs, pgdp=0000000089772000 [466.367140] [00000000000000c0] pgd=0000000000000000, p4d=0000000000000000, pud=0000000000000000 [466.375875] Internal error: Oops: 0000000096000005 [#1] PREEMPT SMP [
466.382163] Modules linked in: rfcomm snd_seq_dummy snd_hrtimer snd_seq snd_seq_device algif_hash algif_skcipher af_alg bnep binfmt_misc vc4 snd_soc_hdmi_codec drm_display_helper cec brcmfmac_wcc spidev
rpivid_hewvc(C) drm_client_lib bremfmac hci_uart drm_dma_helper pisp_be btbcm brecmutil snd_soc_core aes_ce_blk v412_mem2mem bluetooth aes_ce_cipher snd_compress videobuf2_dma_contig ghash_ce cfg80211 gf128mul -

23

Common Pointer Bugs

Uninitialized Pointer (BAD)

Initialized Pointer (OK)

void func(void) void func(void)
{ {
char *p; char *p = NULL;
*p = 0x100; // undef behavior *p = 0x100; // defined behavior (crash)
} }
Dangling Pointer

void func(void)

{

char *p;

if(1)
{
char c
p = &c;
}

*p = 0x100; // undef behavior (object c is gone)

_ €129 .
= a)

24

Agenda

evoid

*basic types
* char
*signed integers
*unsigned integers
 floating-point

*enumerated types

derived types
*structures
e pointers
*arrays
*unions
 functions

*Pointers
*Basics (continued)
*Why pointers?
*Pointer nuances

Arrays and Strings

*Array nuances

25

Initializing Multiple Pointers

* C allows multiple declarations on one line

char a, b; // neither initialized
char a = ‘@’, b; // b uninitialized
char a = ‘a@’, b = ‘b’; // both initialized

* It gets messy and confusing with pointers

char *a, b; // b is NOT a pointer; neither are initialized
char *a = NULL, *b; // b uninitialized
char a = 0, *b = &a; // both initialized

*We recommend sticking to one line per declaration/initializer

char *a NULL,
*p = NULL; // if you must

26

Pointers to Structs

* A pointer can point to any C object (int, struct, enum, pointer, etc.)

Singly-Linked List

struct node
{
uint8 t data;
struct node *next;
}

Passing a Struct By Value

head

NULL
data data data
next next next

Passing a Struct By Pointer

void initialize node(struct node n)
{
new _node.data = 0;
new_node.next = NULL;
} // n is destroyed here (original unmodified)

void initialize node(struct node* n)
{
new_node->data = 0; // (*new_node).data
new _node->next = NULL; // (*new node).next
} // original n is modified

27

The Void Pointer

«.

P

Cannot dereference a “void *”
(compiler doesn’t know how to interpret

is a pointer to an object of type “void”

what is at the memory address)

—

void *p; Vol

J

=

—

—

Type “void” is incomplete

1

6.3.2.3 Pointers

A pointer to void may be converted to or from a pointer to any object type.

*Implies we can convert any pointer type to any other type

ISO Standard 9899:201x (6.3.2.3)

* Enables reinterpreting an object as a different type (more on this later)

uint8 t u = oxff;
struct node *p = (struct node *)&u;
p->next = NULL; // very bad things happen!

28

Pointers to Pointers

“ppp” pOintS to “pp”

“pp” pOintS to “p”

20
S

uintle t *p;

&u

&u

A

«. . » «_ 9

p~ points to “u

uintle t **pp;

Q0
S
i)

&p

uintle t ***ppp;

&pp

uintlée t u;
Ox0000

uintle t u = 0;
uintle t *p = &u;

uintle t **pp = &p;

uintle t ***ppp = &pp;

29

Pointer-to-pointer Example: Singly Linked List

struct node
{
uint8 t data;
struct node *next;
}

Head

NULL
data data data
next next next

struct node * create node(void);

void insert_at head(
struct node **head, int data);

int main(int argc, char *argv[])

{
struct node *head = create_node();
insert _at head(&head, 0);
insert _at head(&head, 1);

void insert at head(struct node **head, int data)

{

// initialize the new node

struct node *new node = create_node();
new_node->data= data;

new_node->next = *head;

// update head
head->next = *head;
*head = new_nhode;

30

Agenda

evoid

*basic types
* char
*signed integers
unsigned integers
 floating-point

*enumerated types

derived types
e structures
e pointers
*arrays
* unions
 functions

Pointers

*Basics (continued)
*Why pointers?
*Pointer nuances

Arrays and Strings

*Array nuances

31

Arrays and Strings

* C arrays are objects in memory

* An array object contains a sequential list of some other type of object

* No metadata for array length

void func(void)

{
int8 t arr[4] = {-2, -1, 0, 1};
// some code
}
void func(void)
: : {
C strings are just char str[] = “cs211”;
arrays of characters
ith Il i
(with a null terminator) // some code
}

&arr

&str

Oxfe

Oxff

0x00

ox01

CCJ

(SJ

f2)

(1)

(1)

Array Object

(identifier = “arr”)

> Array Object

(identifier = “str”)

0x00

32

Indexing C Arrays

* Array indexing is very straightforward

void func(void)
{
int8 t i[4] = {-2, -1, @, 1};
printf("%d%d%d%d", i[@], i[1], i[2], i[3]);
}
void func(void)
{
char c[3] = {'c', 's', '"\0’};
printf("%c%c", c[0], c[1]);
printf("%s", c);
}

&arr

&str

Oxfe

Oxff

0x00

Ox01

<+« i[0]
<« 1[1]

<« i[2]

S i[3]\

int8_t Object

char Object
<« c[0] v
<+ C[1]
<« c[2]

33

Under the Hood, Indexing is Just Pointers

* Array identifiers act like pointers (to the first element)

void func(void)

{

uint8 t a@ =
uint8 t al =

}

uint8 t arr[4] = {0, 1, 2, 3};

arr

Oxfe

Oxff

*arr; // == arr[0]
*(arr + 1); // == arr[1]

0x00

ox01

* Element access is just shorthand for pointer arithmetic

uint8 t

arr[]; €= yint8 t *arr;

arr[0] €————p *grpr

arr[1] €e———> *(arr + 1)

arr[N] € *(grr + N)

34

Pointer Arithmetic

Element access is just shorthand for pointer arithmetic
p[n] & *(p + n)

 Adding/subtracting integers operates on units of 1

uinté4 t u = 0;
u=u+1l; //u=1

* Adding/subtracting pointers operates on units of "sizeof(pointee)”

uinte4 t *p = 0; uint32 t *p = 0; uintle t *p = 0;
p=p+1;// p =38 p=p+1; // p=4 p=p+1; // p=2
0 " 0 0
. [63:0] , b[31:0] i b[15:0]
b[63:0] b[31:0] b[15:0]

Agenda

evoid

*basic types
* char
*signed integers
unsigned integers
 floating-point

*enumerated types

derived types
e structures
e pointers
*arrays
* unions
 functions

Pointers

*Basics (continued)
*Why pointers?
*Pointer nuances

Arrays and Strings
*Array nuances

Caution: Array Off-By-One Errors

int array[10];

for(int i = @; i++)
array[i] = ©;

I

Array “out of bounds” access
» Cdoes NOT check for you!
» Undefined behavior: can be hard to debug

* Avoid magic numbers - error prone and hard to read/change

#define ARR_LEN 10

int array[ARR_LEN];
for(int i = @; 1 < ARR_LEN; i++)
array[i] = ©;

37

Array vs. Pointer Identifiers

Array identifiers refer to
one array object

\

uint8 t arr[3] = {1, 2, 3};
uint8_t *p = &arr;

y

Pointer identifiers refer to
one pointer object

&arr

sarr | L Pointer object
(holds memory addresses)
0x01 .
Array object
0x02 :
(sequence of other objects)
Ox03
sizeof(arr) == 3
sizeof(arr[0]) == 1
sizeof(p) == 8

Size of an Array

uint8 t arr[3] = {1, 2, 3};
uint8 t *p = &arr;

Compiler knows the length of arr

num_elements = sizeof(arr) / sizeof(arr[0]);

(the information is embedded in the type)

Compiler does NOT know the length
of an array pointed to by p

p LS
sarr | L Pointer object
(holds memory addresses)
&arr
0x01 .
Array object
0x02 :
(sequence of other objects)
Ox03
sizeof(arr) == 3
sizeof(arr[0]) == 1
sizeof(p) == 8

39

Caution: Pointers and Arrays are Not Identical

uint8 t arr[3] = {1, 2, 3};
uint8_t *p = &arr;

* Do not confuse pointer and array types
* arr does NOT “store” a memory address
 Can’t change the address it represents

* Type of arr = array of uint8 t[3]
* uint8 t[3]

e Type of &arr = pointer to array
e uint8 t(*)[3]

* Type of p = pointer to uint8 t
e uint8 t *

&arr

sarr | L Pointer object
(holds memory addresses)
0x01 .
Array object
0x02 :
(sequence of other objects)
Ox03
sizeof(arr) == 3
sizeof(arr[0]) == 1
sizeof(p) == 8

40

Multidimensional Arrays

* The compiler “does the right thing” for multidimensional arrays

uint8 t mat _2d[2][2]
uint8 t mat _1d[4]

{{0, 1}, {2, 3}};
{o, 1, 2, 3};

mat_2d[0][©] == mat_1d[0];

mat_2d ¢ mat_1d

Ox00 Ox00
Ox01 Ox01
Ox02 0x02
Ox03 Ox03

Demotion to Pointers

* Array objects are treated as pointers when passed to a function

void func(int *arr);

} Treated as identical

void func(int arr[]);

int main(int argc, char *argv[]); }Treated as identical

int main(int argc, char **argv);

* Function arguments lose the array type information
e Can no longer use sizeof(arr)
* Need to explicitly pass the array length or use a sentinel to mark the end

42

Multidimensional Arrays: Example “argv”

netid@ilab:~/cs211$./pa3 two

int main(int argc, char *argv[])

{
}

// code

argv is an array of pointers

—p argv[o]

argv
char * —
argv + 1
char * —
argv + argc
NULL

~> argv[1]

('t)

CWJ

f@.’

NULL

argv[n] are Cstrings

f/)

(p)

(3)

NULL

43

Next Week

* Functions (and parameter passing)
* Memory layout of a C program
* Dynamic memory allocation

44

CS 211: Intro to Computer Architecture
6.1: C Data Representation lll: Derived Types Cont.

Minesh Patel
Spring 2025 — Tuesday 25 February

	Default Section
	Slide 1: CS 211: Intro to Computer Architecture 6.1: C Data Representation III: Derived Types Cont.
	Slide 2: Announcements
	Slide 3: Reference Material
	Slide 4: Standards are Great, But…
	Slide 5: Recommended GCC Warning Options
	Slide 6: Agenda
	Slide 7: Recap: Pointers “Point” to Other Objects
	Slide 8: Pointer Example
	Slide 9: Pointer Example
	Slide 10: Pointer Example
	Slide 11: Pointer Example
	Slide 12: Interpreting Memory Locations
	Slide 13: Pointer Example 2
	Slide 14: Pointer Example 2
	Slide 15: Pointer Example 2
	Slide 16: Pointer Example 2
	Slide 17: Agenda
	Slide 18: Passing Parameters in C
	Slide 19: Pointer Use-Case 1: Passing Parameters
	Slide 20: Pointer Use-Case 2: Memory Management
	Slide 21: Pointer Use-Case 2: Dynamic Memory Management
	Slide 22: Pointer Use-Case 3: Low-Level Programming
	Slide 23: Caution: Pointer Bugs
	Slide 24: Common Pointer Bugs
	Slide 25: Agenda
	Slide 26: Initializing Multiple Pointers
	Slide 27: Pointers to Structs
	Slide 28: The Void Pointer
	Slide 29: Pointers to Pointers
	Slide 30: Pointer-to-pointer Example: Singly Linked List
	Slide 31: Agenda
	Slide 32: Arrays and Strings
	Slide 33: Indexing C Arrays
	Slide 34: Under the Hood, Indexing is Just Pointers
	Slide 35: Pointer Arithmetic
	Slide 36: Agenda
	Slide 37: Caution: Array Off-By-One Errors
	Slide 38: Array vs. Pointer Identifiers
	Slide 39: Size of an Array
	Slide 40: Caution: Pointers and Arrays are Not Identical
	Slide 41: Multidimensional Arrays
	Slide 42: Demotion to Pointers
	Slide 43: Multidimensional Arrays: Example “argv”
	Slide 44: Next Week
	Slide 45: CS 211: Intro to Computer Architecture 6.1: C Data Representation III: Derived Types Cont.

