
CS 211: Intro to Computer Architecture
5.2: C Data Representation: Derived Types

Spring 2025 – Thursday 20 February

Minesh Patel

Announcements

•PA2 due Sunday, Feb 23 @ 23:59

•WA3 due next Monday, Feb 24 @ 23:59
• On Canvas this time instead of Gradescope

•WA4 to be assigned sometime in the next several days

Reference Material

•Today’s lecture partially draws inspiration from:
• CS 61C @ UC Berkeley (Prof. Dan Garcia)

3

And Various C and Linux Reference Materials

https://cs61c.org/sp25/

Pedantic Correction: Literal vs. Constant

• This is a complex topic (specifically compound literals 9899:201x 6.5.2.5)

• For our purposes:

4

Literal
Creates an object in memory

(may or may not be modifiable)

Constant
Does NOT occupy memory

(can be evaluated at compile-time)

char *s = "hello";
char *c = (char []){"abc"};
int *i = (int[]){-1, 1};

struct vector
{

int x;
int y;

} *v = &(struct vector){.x = 1, .y = 0};

int a = 10;
char c = 'c’;
int e = VAL; // enum value
uint64_t u = 0xfull;

Agenda

•Enumerated and Derived Types

Recap: What is this “Memory”?

6

Memory
(your C program
objects, code, …)

small, fast, expensive

Disk
(files in storage)

big, slow, cheap

CPU
(running the code)

int a = -2;
0x104

0x108
ffff_fffe

In
 s

o
u

rc
e

 c
o

d
e

In
 m

e
m

o
ry

Recap: Why Does C Have Types?

•Types tell the compiler how to represent objects in memory

7

identifier

type representationvalue

Recap: Undefined/Impl. Defined Behavior

8

Implementation Defined Behavior: OK
• Just remember that this varies between platforms

Undefined Behavior: BAD
• Compiler will often warn you (in most cases)

Use –Wall!

Agenda

•void

•basic types
• char
• signed integers
• unsigned integers

• floating-point

•enumerated types

•derived types
• structures
• pointers
• arrays
• unions
• functions

9
ISO Standard 9899:201x

enum my_enum
{

VAL0, // A = 0
VAL1, // B = 1
VAL2 = 3 // C = 3

};

void func(void)
{

enum my_enum a = VAL0;
}

“Enumerated Type”

“Enumeration constant”

Closer Look: Enumeration Constants

10

• Enumerated constants are really just named integer constants

enum days_in_a_month
{

JAN = 31,
FEB = 28,
MAR = 31,
APR = MAR - 1,
...

};

Non-unique
Non-monotonic

Usable once defined

void func(void)
{

int days_in_a_year = JAN + FEB + MAR + ...;

printf(“Year: %d\n", days_in_a_year);
}

JAN

You Write Equivalent Code

FEB (int)28

(int)31

MAR (int)31

Just integer values

Enums: Two Independent Types

11

• Enum definitions contain two independent types

enum days_in_a_month
{

JAN = 31,
FEB = 28,
MAR = 31,
APR = MAR - 1,
...

};

void func(void)
{

enum days_in_a_month jan_days = JAN;
int days_in_a_year =
 JAN + FEB + MAR + ...;

printf(“January: %d\n", jan_days);
printf(“Year: %d\n", days_in_a_year);

}

“Enumeration constant”
• Type is always int
• Completely independent of the “Enumerated Type”

2

“Enumerated Type”
Defines a new type with an implementation defined
representation
• Compatible with {char, int, or unsigned int}
• Whichever is large enough to hold all values

1

Type Checking and Implicit Casting

•Enums have very limited type checking

12

enum enum_type_0
{

A = -(1u << 17),
B = (1u << 17)

}

enum enum_type_1
{

C,
D = 10,

};

enum enum_type_2
{

E,
F = (1ull << 62)

};

ISO 1988:2011 says that Enumerated Types
can only be {char, int, or unsigned int}

Could be any of:
{char, int, or unsigned int}

Could be any of:
{char, int, or unsigned int}

void func(void)
{

enum enum_type_0 et0 = A;
enum enum_type_1 et1 = C;
enum enum_type_2 et2 = E;

}

Sensible Code (Allowed)

void func(void)
{

enum enum_type_0 et0 = C;
enum enum_type_0 et1 = D;
enum enum_type_0 et2 = E;

}

Misleading Code (Still Allowed)

void func(void)
{

int et0 = A;
int et1 = C;
int et2 = E;

}

Ignored Typing (Allowed)

No specific compiler warnings/errors about mismatched enum types

Enums vs. Macros

• If there aren’t strong type checks, why not just use macros?

13

• Unlike macros (which are processed before compilation), enums:
• Are visible in the debugger (gdb)

• Obey scoping rules

• Follow int typing rules

void func(void)
{

int days_in_a_year = JAN + FEB + MAR + ...;

printf("Year: %d\n", days_in_a_year);
}

enum days_in_a_month
{

JAN = 31,
FEB = 28,
MAR = 31,
APR = MAR - 1,
...

};

#define JAN 31
#define FEB 28
#define MAR 31
#define APR (MAR – 1)
...

Agenda

•void

•basic types
• char
• signed integers
• unsigned integers

• floating-point

•enumerated types

•derived types
• structures
• pointers
• arrays
• unions
• functions

14

•Structs are a set of objects under one identifier
• Simply for programming convenience

• NOT related to OOP/classes/methods

struct my_struct
{

int a;
int b;

};

void func(void)
{

struct my_struct i = {.a = 0, .b = -1};
printf("%d %d\n", i.a, j.a);

}

0x00 exa
m

p
le m

em
o

ry
 la

y
o

u
t

a0b0

…
…

0x00

0x00

0x00

0xff

0xff

0xff

0xff
a0b8

It’s not always this simple.
More on that next week

Structures

•You can have whatever objects you want in a struct
• There are no “method calls”, “public/private access”, or “inheritance” like C++/Java
• It’s just a sugar-coated way of accessing the members

15
•We will revisit structs after covering pointers

struct my_struct
{

unsigned char a;
int64_t b;
enum my_enum e;

};

void func(void)
{

struct my_struct i;
i.a = 0;

}

• Three separate memory locations
• Updating one does NOT affect another

Pointers Store Memory Addresses

•void

•basic types
• char
• signed integers
• unsigned integers

• floating-point

•enumerated types

•derived types
• structures
• pointers
• arrays
• unions
• functions

16

•Pointer objects represent memory addresses
• Compatible with an unsigned integer type (ilab: uint64_t)

1. Memory is a contiguous sequence of bytes.

2. Each byte in memory has a unique address.

Recall:

0x100

“p” points to “c”

(char *)p
&p

Also somewhere
in memory

0x21&c = 0x100 (char)c

0xf3

0xab

0x10

0x6d

…
…

The Width of a Pointer Object

•Width of a memory address (pointer) is implementation defined
• 64 bits on RISC-V-64 (and x86_64, AArch64)
• <= 32 bits on many older or low-power systems

17

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{

char c = '!'; // ascii 0x21

printf("%c @ %p\n", c, &c);
return EXIT_SUCCESS;

}

0x21

m
em

o
ry

0x40_0080_0337

…
…

[Demo] Examining Memory in GDB

• start or run – start the session

• break <location> - set a breakpoint
• b main – break at the main function

• b main.c:11 – break there, for example

• p <variable> - print a variable
• p/x <variable> – print in hex

• p/t <variable> – print in binary

• x <address> - print memory at the address
• x/10b <address> – print 10 bytes

• x/10b <variable> - get the address from a variable

• layout <command> - change the GDB layout

• help <command> - get some help ☺ 18

Terminal Emulator 1:
netid@ilab4:~/cs211/experiment$ /common/system/riscv64i/grun pointer

Terminal Emulator 2:
netid@ilab4:~/cs211/experiment$ /common/system/riscv64i/gdb pointer

same ilab machine! same directory!

Aside: Size of Integer and Pointer Types

•A pointer represents a memory address as an unsigned number

•How many bits do we need in a pointer?

19

64 MB of RAM 512 MB of RAM 8 GB of RAM

Depends on how much memory we have

Aside: Size of Integer and Pointer Types

•A pointer represents a memory address as an unsigned number

20http://www.vintagecalculators.com/html/busicom_141-pf.html
http://www.vintagecalculators.com/html/busicom_141-pf.html

Pointer size
12 bits

Max. Memory
640 bytes1971 Intel 4004

Data Width
4 bits uint64_t[10]

Aside: Size of Integer and Pointer Types

•A pointer represents a memory address as an unsigned number

21https://cdn-blog.adafruit.com/uploads/2019/01/Untitled-17.pngGregory, Klahn, Bonilla, “NES Hardware Emulation”

1983 2 Kbytes16 bits

Pointer size
12 bits

Max. Memory
640 bytes1971 Intel 4004

Data Width
4 bits

Richo RP2A03 (NES) 8 bits

1982 MOS 6510 (Commodore 64)

1977
64 Kbytes16 bits

MOS 6502 (Apple II, Atari 2600)
8 bits

https://upload.wikimedia.org/wikipedia/comm
ons/0/02/Atari-2600-Wood-4Sw-Set.png

https://web.mit.edu/6.111/volume2/www/f2019/projects/dklahn_Project_Design_Presentation.pdf

Aside: Size of Integer and Pointer Types

•A pointer represents a memory address as an unsigned number

22

1983 2 Kbytes16 bits

Pointer size
12 bits

Max. Memory
640 bytes1971 Intel 4004

Data Width
4 bits

Richo RP2A03 (NES) 8 bits

1982 MOS 6510 (Commodore 64)

1977
64 Kbytes16 bits

MOS 6502 (Apple II, Atari 2600)
8 bits

1997 4 Gbytes32 bitsPowerPC 750 (iMac) 32 bits

2000 4 Gbytes32 bitsPentium 4 (desktops/laptops/servers) 32 bits

2003 16 Ebytes64 bitsAthlon 64 (desktops/laptops/servers) 64 bits

Upper Bound: no vendor actually builds this much

Pointers Enable Read/Write to Other Objects

23

0xffff

(uint16_t)u

0x100
0x100

“p” points to “u”

(uint16_t *)p

Declaring a Pointer Object

uint16_t u = 0xffffu;
uint16_t *p = &u;

Address of object “u”

0x0000

(uint16_t)u

*p = *p + 1;

Writing the Value Pointed To

0xffff
0x100

Reading the Value Pointed To

uint16_t v = *p - 1;
0xfffe

(uint16_t)v

“dereference the pointer”

0x102

Initializing Pointer Objects

•The C library provides a macro NULL to represent “pointing to nothing”

24

https://en.cppreference.com/w/c/types/NULL

uint16_t *p;

Uninitialized Object

Value is undefined.
Points to “something” (e.g., random

location in memory, invalid location, etc.

uint16_t *p = NULL;

Correctly Initialized

Value is well-defined.
Points to “no object”.

uint16_t u;
uint16_t *p = &u;

Correctly Initialized

Value is well-defined.
Points to “object u”.

uint16_t *p = NULL;
if(p == NULL)

handle_error();

Using NULL Pointers

•Dereferencing NULL will always crash the program
• Helpful for debugging! Much better than undefined behavior

25

•Note: do not confuse 0 (for integers) with NULL (for pointers)
• Further reading: https://c-faq.com/null/

•Any type of pointer can be set to NULL
• Best-practice to initialize pointers to NULL
• Pointer-returning functions often return NULL to signal an error

int *p = NULL; uint64_t *p = NULL; char *p = NULL;

uint16_t *p = NULL;
uint16_t u = *p; // crash

https://c-faq.com/null/

Pointer Example

26

#include <stdlib.h>

void func(void)
{

uint16_t *p = NULL; // NULL = invalid address
uint16_t u = 0xffffu;

p = &u;
printf(“%p %x %x\n”, p, *p, u);

u >>= 4;
printf(“%p %x %x\n”, p, *p, u);

*p >>= 4;
printf(“%p %x %x\n”, p, *p, u);

}

p = NULL

u = 0xffff

…
…

0x100

0x108

• Declare an identifier p
• Type “pointer to uint16_t”
• Initialized to NULL

• i.e., pointing to “nothing”

Pointer Example

27

#include <stdlib.h>

void func(void)
{

uint16_t *p = NULL; // NULL = invalid address
uint16_t u = 0xffffu;

p = &u;
printf(“%p %x %x\n”, p, *p, u);

u >>= 4;
printf(“%p %x %x\n”, p, *p, u);

*p >>= 4;
printf(“%p %x %x\n”, p, *p, u);

}

p = NULL 0x108

u = 0xffff

…
…

0x100

0x108

• Set p to the address of u
• “p points to u”

• Print the value pointed to by p
• *p: “dereferencing the pointer”

• Declare an identifier p
• Type “pointer to uint16_t”
• Initialized to NULL

• i.e., pointing to “nothing”

Pointer Example

28

#include <stdlib.h>

void func(void)
{

uint16_t *p = NULL; // NULL = invalid address
uint16_t u = 0xffffu;

p = &u;
printf(“%p %x %x\n”, p, *p, u);

u >>= 4;
printf(“%p %x %x\n”, p, *p, u);

*p >>= 4;
printf(“%p %x %x\n”, p, *p, u);

}

p = NULL 0x108

u = 0x0fff

…
…

0x100

0x108

• Set p to the address of u
• “p points to u”

• Print the value pointed to by p
• *p: “dereferencing the pointer”

• Declare an identifier p
• Type “pointer to uint16_t”
• Initialized to NULL

• i.e., pointing to “nothing”

• P still points to u

Pointer Example

29

#include <stdlib.h>

void func(void)
{

uint16_t *p = NULL; // NULL = invalid address
uint16_t u = 0xffffu;

p = &u;
printf(“%p %x %x\n”, p, *p, u);

u >>= 4;
printf(“%p %x %x\n”, p, *p, u);

*p >>= 4;
printf(“%p %x %x\n”, p, *p, u);

}

p = NULL 0x108

u = 0x00ff

…
…

0x100

0x108

• Set p to the address of u
• “p points to u”

• Print the value pointed to by p
• *p: “dereferencing the pointer”

• Declare an identifier p
• Type “pointer to uint16_t”
• Initialized to NULL

• i.e., pointing to “nothing”

• P still points to u

• Changes the value pointed to by p

CS 211: Intro to Computer Architecture
5.2: C Data Representation: Derived Types

Spring 2025 – Thursday 20 February

Minesh Patel

	Default Section
	Slide 1: CS 211: Intro to Computer Architecture 5.2: C Data Representation: Derived Types
	Slide 2: Announcements
	Slide 3: Reference Material
	Slide 4: Pedantic Correction: Literal vs. Constant
	Slide 5: Agenda
	Slide 6: Recap: What is this “Memory”?
	Slide 7: Recap: Why Does C Have Types?
	Slide 8: Recap: Undefined/Impl. Defined Behavior
	Slide 9: Agenda
	Slide 10: Closer Look: Enumeration Constants
	Slide 11: Enums: Two Independent Types
	Slide 12: Type Checking and Implicit Casting
	Slide 13: Enums vs. Macros
	Slide 14: Agenda
	Slide 15: Structures
	Slide 16: Pointers Store Memory Addresses
	Slide 17: The Width of a Pointer Object
	Slide 18: [Demo] Examining Memory in GDB
	Slide 19: Aside: Size of Integer and Pointer Types
	Slide 20: Aside: Size of Integer and Pointer Types
	Slide 21: Aside: Size of Integer and Pointer Types
	Slide 22: Aside: Size of Integer and Pointer Types
	Slide 23: Pointers Enable Read/Write to Other Objects
	Slide 24: Initializing Pointer Objects
	Slide 25: Using NULL Pointers
	Slide 26: Pointer Example
	Slide 27: Pointer Example
	Slide 28: Pointer Example
	Slide 29: Pointer Example
	Slide 30: CS 211: Intro to Computer Architecture 5.2: C Data Representation: Derived Types

