CS 211: Intro to Computer Architecture
5.1: C Data Representations

Minesh Patel
Spring 2025 — Tuesday 18 February

Announcements

* PA2 due at the end of the week (Sunday, Feb 23 @ 23:59)

* WA3 due next Monday night (Monday, Feb 24 @ 23:59)
* On Canvas this time instead of Gradescope
* We should have probably used Canvas from the get-go

Reference Material

* Today’s lecture partially draws inspiration from:
* CS 122 @ CMU (Profs. lliano Cervesato and Anne Kohlbrenner

 CS 61C @ UC Berkeley (Prof. Dan Garcia

And Various C and Linux Reference Materials

cppreference.com

Page Discussion

C

C reference
89, €95, €99, C11,C17, C23 | Compiler support €99, C23
Language Program utilities

Basic concepts Variadic functions
Keywords Diagnostics library

E;epprgc;;essgr Dynamic memory management
Declaration Strings library
Initialization Null-terminated strings:
Functions byte — multibyte — wide
Statements Date and time library

Headers Localization library

Type support Input/output library

Create account H Search |

Standard revision: Diff ¥ | View View source History

Algorithms library

Numerics library
Common mathematical functions
Floating-peint environment (css)
Pseudo-random number generation
Complex number arithmetic (css)
Type-generic matl)
Bit manipulation (
Checked integer arithmetic (c23)

Concurrency support library (c11)

N1570 Committee Draft — April 12, 2011

/IEC 9899:201x

INTERNATIONAL STANDARD

©ISO/MEC

/IEC 9899:201x

Programming languages — C

ADCTR ALT

A mp2099@ilab4: ~/fcs211/expe X

MAN(1)

NAME

Manual pager utils

man - an interface to the system reference manuals

Manual page man(1) e 1 (press h for help or

to

Linux Documentation

Search all of the Linux documentation available on this site:

[ConterstOTer bunch Google Search

Man Pages

Sections 1, 2, 3,4,5,6,7,8, |, orn
HOWTO Collection
Ao e rETes Advanced Bash-Scripting Guide
EnAtet kil Bash Guide for Beginners
Bugzilla Guide
Dive Into Python
Enterprise Volume Management System Users Guide
Introduction to Linux
Linux Command-Line Tools Summary
Linux Kernel Module Programming Guide
Linux with Mobile Devices
System Administrators' Guide

linux docs

world sunlight
moon phase
trace explarer

]

MAN(1)

https://www.cs.cmu.edu/~15122/home.shtml
https://cs61c.org/sp25/

Foreword

*We do not expect you to memorize obscure C programming quirks
* Goal of lecture: know what concepts to look up ©

*We do expect you to:
* Look up reference material as needed (e.g., when you run into problems)
» Go over examples yourself after lecture

Agenda

*C’s Type System

Why Does C Have Types?

* Types tell the compiler what to do with your code
* How to represent identifiers as objects in memory
* Defines an object’s size and supported operations

— T

type value

v :
O : .
O : representation =
v i
) . } : ” 3
L9 . | 0x104 o
= int a = -2: | fHff_fffe
-) ! 0x108 = 3
o 1 | o
v I -
= identifier : <
cppreference.com Create account || search |
Page Discussion Standard revision: Diff v | View Edit History

C Clanguage Basic Concepts
6.2.5 Types
1 The meaning of a value stored in an object or returned by a function is determined by the Type
type of the CXDI'CSSiOIl used to access it. (See also arithmetic types for the details on most built-in types and the list of type-related utilities that are provided by the C library.)

Objects, functions, and expressions have a property called type, which determines the interpretation of the binary value

ISO Standard 9899:201x stored in an object or evaluated by the expression.

Void Types

6.2.5 Types

1 The meaning of a value stored in an object or returned by a function is determined by the

° VOid type of the expression used to access it.

*basi
ds1c types n object type may be |
e char incomplete (lacking sufficient information to determine the size of objects of that type) or |

complete (having sufficient information).?”)

*signed integers

* UNs igned 1 ntege rs 19 z:ln; ;ob:i:'i (E}g;lei2§prises an empty set of values; it is an incomplete object type that |
 floating-point

ISO Standard 9899:201x

*enumerated types

*derived types identifier
* arrays N / v
e structures Va)dia, void function(void);
* unions t 1
* functions it on neeion st type type
* PO inters - | void 2; compiler sees: compiler sees:
: S | “ho return value” “no arguments”

Void vs. Unknown Function Arguments

Caution: never leave your argument list empty

compiler sees:
“expect no arguments”

mp2099@ilab2: ~fcs2Mfexper X + v - o

] $ cat bad_arg.c
#include <stdlib.h=>

void empty(void) {}
int main(int arge, char *argv[])
{
empty(0.1);
return EXIT_SUCCESS;
1
3
3 $ /common/system/risc
v1/b1n/r15cv6ﬂ unknown- el¥ gcc -0 bad_arg bad_arg.c
bad_arg.c: In function 'main’
bad_arg.c:6:5: too many arguments to function
"empty’
6 | (e.1);
|
bad_arg.c:3:6: note: declared here
3 | void empty(void) {}
| Pz
$ |

void function(void); |€¢=—— notthe same —

mp2099@ilab2: ~/cs21fexper X + | ~ - o
3 $ cat bad_arg.c
#include <stdlib.h>

void empty() {}
int main(int argec, char *argv[])
{
empty(@.1);
return EXIT_SUCCESS;
1
3
] $ /common/system/risc
v1fb1nfrlscv6ﬂ unknown-elf-gcc —o bad_arg bad_arg.c
$./bad_arg
$ echo $?

$ |

0

void function();

compiler sees:
“arguments not known”

\

compilers disables
argument checking

\

no warnings or errors

{

potential bugs

Basic Types: Agenda

evoid

basic types
* char
signed integers
unsigned integers
* floating-point

*enumerated types

derived types
* arrays
e structures
e unions
e functions
* pointers

Overview
Format strings
Initialization
Arithmetic

Type casting

Basic Types

* Types connect objects with representations

Compiler represents it as

Programmer declares the identifier/type an object of the type

void func(void) 0x100

{ peron 6300 0000
char ¢ = ‘c’; // ASCII codepoint 99 s ffff_fffe
signed int s = -0x2; e code cafe
gnsigned.int u =.@xc@decafe;) FEEEFFEf
inté4 t 1 = -683; FFFff fd55
float f = -0.000001; ox114 — —

} s bd37_ 86b5

Character Types

evoid

*basic types
* char
*signed integers
*unsigned integers
 floating-point

enumerated types

derived types
e arrays
* structures
e unions
 functions
* pointers

Platform
Dependent

15 The three types char, signed char, and unsigned char are collectively called
the character typeschar to have the same range,
representation, and behavior as either signed char orunsigned char.®)

ISO Standard 9899:201x

char > Meant for text (e.g., ‘a’)

slgr)ed char]-—» Meant for numbers
unsigned char

ASCII

(Codepoints 32-63) .] . . .

int is binary digit(char c)

{
return (c == ‘@° || ¢ == ‘1°);
return (c >= ‘0’ && c <= ‘1°);
return (c > /° && c <= 2°);
return (c >= 48 && c <= 49);
return (c > Ox2f && c <= 0x32);

}

1

Integer Types

*void

*basic types
* char
signed integers
*unsigned integers
 floating-point

*enumerated types

derived types
* arrays

structures

e unions

functions

pointers

Type specifier

Equivalent type

char

char

signed char

signed char

unsigned char

unsigned char

Width in bits
C standard

at least
8

short

short int

signed short

signed short int

short int

unsigned short

unsigned short int

unsigned short int

at least
16

int

signed

signed int

int

unsigned

unsigned int

unsigned int

at least
16

long

long int

signed long

signed long int

long int

unsigned long

unsigned long int

unsigned long int

at least
32

long long

long long int

signed long long

signed long long int

long long int
{co9)

unsigned long long

unsigned long long int

unsigned long long int

(cog)

at least
64

Besides the minimal bit counts, the C Standard guarantees that

1 == |sizeof(char)

= sizeof(short)

= |sizeof(int) = s:

https://en.cppreference.com/w/c/language/arithmetic_types

Platform Dependent

“Implementation Defined”
in C terminology

12

Aside: Undefined vs. Implementation-Defined Behavior

* C standards leave many decisions to the platform (i.e., compiler)

N1548 Committee Draft — December 2, 2010 ISO/IEC 9899:201x

Annex I (informative) Common warnings

Annex J (informative) Portabilityissueso 0000,
J.1 Unspecified behavior 000000 550
J.2 Undefined behavior 00000000 553
J.3 Implementation-defined behavior 566
J.4 Locale-specific behavior o000 0000,

CXTENSIONS & & & o o o o & o o o 4 e e e e e e e e

13

Aside: Undefined vs. Implementation-Defined Behavior

Undefined Behavior

* Unpredictable: may differ across executions
» Compiler may or may not warn you

#include <limits.h>
int fo(void)
{
return 1 / @; // div/mod by zero
}
int fl1(void)
{
int a;
return a; // uninitialized object
}
int f2(void)
{
return INT_MAX + 1; // signed overflow
}

Implementation Defined Behavior

» Each compiler makes its own decision
 Consistent on the same platform

@e. If the sign bit is one, the value shall be modified in one of the
following ways:

— the corresponding value with sign bit 0 is negated (sign and magnitude);

— the sign bit has the value —(2") (two’s complement);

ones’ complement).

hich of these applies is implementation-defined

ISO Standard 9899:201x

#tinclude <limits.h>

int fo(void)
{

}

return UINT_MAX; // conversion exceeds int’s range

14

Aside: Avoid Undefined Behavior

* Just say no!

The LLVM Project Blog

LLVM Project News and Details from the Trenches ﬂ Q vy O

.= Microsoft | Dev B|ogs Developer »» Technology ~ Languages + .NET ~ Platform Development «» Data Development «

Dev Blogs » The Old New Thing > Undefined behavior can result in time travel (among other things. but time travel is the funkiest)

About Posts Tags llvm.org

June 27th, 2014

Undefined behavior can result in time travel
(among other things, but time travel is the

What Every C Programmer Should Know
About Undefined Behavior #1/3

funkiest)

i Hoptimization , #Clang
E‘j Raymond Chen

e

People occasionally ask why LLVM-compiled code sometimes generates
SIGTRAP signals when the optimizer is turned on. After digging in, they find
that Clang generated a "ud2" instruction (assuming X86 code) - the same as
is generated by __builtin_trap(). There are several issues at work here, all
centering around undefined behavior in C code and how LLVM handles it.

The C and C++ languages are notorious for the very large section of the map labeled here | gons, or more formally,
undefined behavior.

When undefined behavior is invoked, anything is possible. or example, a variable can be both true and false. John Regehr has a
of interesting examples, as well as some winners of the ensuing contest.

https://devblogs.microsoft.com/oldnewthing/20140627-00/?p=633

https://blog.llvm.org/2011/05/what-every-c-programmer-should-know.html

15

Aside: Avoid Implementation-Defined Behavior

e Standard library macros/types typically tell you the compiler’s choice

#tinclude <limits.h>
#tinclude <stdint.h>

intl6e_t fixed(void)
{

intle t a
intle t b
return a + b;

}

int native(void)

{

int a
int b

INT_MIN;
INT_MAX;

return a + b;

INT16_MIN;
INT16_MAX;

J

cppreference.com

Page Discussion

Create account H Search

Standard revision:| Diff v View Edit History

C Type suppert Numeric limits

Numeric limits

Limits of integer types

Limits of core language integer types
Defined in header <limits.h=

BOOL_WIDTH (c23)
CHAR BIT
MB_LEN_MAX
CHAR_WIDTH (c22)
CHAR_MIN

CHAR_MAX

SCHAR_WIDTH (c23)
SHRT_WIDTH (c23)
INT_WIDTH (c23)
LONG_WIDTH (c23)
LLONG_WIDTH (c23)

SCHAR_MIN
SHRT_MIN
INT_MIN
LONG_MIN
LLONG_MIN (cee)

SCHAR_MAX
SHRT_MAX
INT_MAX
LONG_MAX
LLONG_MAX (co5)

UCHAR_WIDTH (c23)
USHRT_WIDTH (c2z)
UINT_WIDTH (c23)
ULONG_WIDTH (cz22)
ULLONG_WIDTH(cz2)

UCHAR_MAX
USHRT_MAX
UINT_MAX
ULONG_MAX
ULLONG_MAX (co9)

bit width of _Bool

(macro constant)

bit width of byte

(macro constant)

maximum number of bytes in a multibyte character
(macro constant)

bit width of char, same as CHAR_BIT
(macro constant)

minimum value of char

(macro constant)

maximum value of char

(macro constant)

bit width of signed char, short, int, long, and long long respectively
(macro constant)

minimum value of signed char, short, int, long and long long respectively
(macro constant)

maximum value of signed char, short, int, Tong and long long respectively
(macro constant)

bit width of unsigned char, unsigned short, unsigned int, unsigned long, and
unsigned long long respectively
(macro constant)

maximum value of unsigned char, unsigned short, unsigned int,
unsigned long and unsigned long long respectively
(macro constant)

cppreference.com

Page Discussion

€ Type support

Create account || Searcn

Standard revision: Diff hd View Edit History

Fixed width integer types (since C99)

Types

. Defined in header =stdint. h=

int8 t signed integer tg'pe with width of

intl6_t exactly 8, 16, 32 and 64 bits respecﬁve*

int32_t with no padding bits and using 2's complement for negative values
int64_t (provided only if the implementation directly supports the type)
int_fasts_t

int”fastlé_t fastest signed integer type with width of
int_fast32_t atleast 8. 16, 32 and 64 bits respectively

int_fast64_t
int_leasts_t

int_leastl6 t smallest signed integer type with width of
int_least32 t atleast 8, 16, 32 and 64 bits respectively

int_least6d t

intmax_t maximum width integer type
intptr_t integer type capable of holding 3 pointer
:ﬂggtt unsigned integer type with width of
wint32 t exactly 8 16, 32 and 64 bits respectively
: -, (provided only if the implementation directly supports the type)
uint64_t
uint_fast8_t

uint_fastl6_t fastest unsigned integer type with width of
uint_fast32_t atleast 8. 16, 32 and 64 bits respectively

uint”fast64_t
uint_least8_t

uint_leastl6 t smallest unsigned integer type with width of
uint_least32_t atleast 8. 16, 32 and 64 bits respectively

uint_least64_t

uintmax_t maximum width unsigned integer type

uintptr_t unsigned integer type capable of holding a pointer
The implementation may define typedef names intn _t. int_fastn t, int_leastN_t, uintN_t. uint_fastm t, and
uint_leastN_t when Nis not 8, 16, 32 or 64. Typedef names of the form intA_t may only be defined if the
implementation supports an integer type of that width with no padding. Thus, uint24_t denotes an unsigned integer
type with a width of exactly 24 bits,
Each of the macros listed in below is defined if and only if the implementation defines the cerresponding typedef name.
The macros INTN C and UINTN_C cerrespond to the typedef names int_leastN_t and uint_leastN t, respectively.

Macro constants
Defined in header <stdint.h»
Signed integers : width
INTS_WIDTH
INTIE WIDTH .
INT32 WIDTH (C23/(speene
INT64_WIDTH

INT_FAST16_WIDTH
INT_FAST32_WIDTH ©*
INT_FAST64_WIDTH
INT_LEASTS_WIDTH

INTPTR_WIDTH (C23}ioprinnal)

INTMAX WIDTH (c23)

bit width of an object of type int8_t, int16_t, int32_t, int64_t (exactly 8, 16, 32,
64)

(macro canstant}

bit width of an object of type int_fast8_t, int_fast16_t, int_fast32_t,
int_fast6d_t

(macro constant]

bit width of an object of type int_least8_t, int_least16_t, int_least32_t,
int_least6d_t

(macro constant}
bit width of an object of type intptr_t
(macro constant]

bit width of an object of type intmax_t

(macro constant!

16

Aside: Avoid Implementation-Defined Behavior

*If you really can’t use <stdint.h>’s fixed-width types, check sizes!

cppreference.com

Page Discussion

C Clanguage Expressions

sizeof operator

Queries size of the object or type.
Used when actual size of the object must be known.

Syntax
sizeof(type) (1)
sizeof expressi jon (2)

Both versions return a value of type size_t.

Explanation
1) Returns the size, in bytes, of the object representation of type

applied to expression.

Crea

te account

] I Search

Standard revision:

Diff

v View Edit

History

2) Returns the size, in bytes, of the object representation of the type of expression. No implicit conversions are

sizeof(char) = 1;

sizeof(unsigned int) = 4;

sizeof(long int) = 8;

sizeof("test") = 5; // type is char[5]

sizeof(int[10]) = 40;

17

Signed Integer Representations

evoid

*basic types
* char
signed integers
unsigned integers
 floating-point

*enumerated types

derived types
* arrays
e structures
e unions
 functions
e pointers

following ways:

— the sign bit has the value —(2") (two s complement);

— the sign bit has the value =(2" — 1) (ones’ complement).

- If the sign bit 1s one, the value shall be modified in one of the

— the corresponding value with sign bit 0 is negated (sign and magnitude);

Which of these applieslis implementation—deﬁned,“

ISO Standard 9899:201x

Two’s Complement
int function(void)

{ OXFFFf FFFF
int a = -1; +
int b =1; 0x0000 0001
return a + b; // 1 -1 X -
} —_—
0X0000_ 0000

Sign-Magnitude

0x1000_0001

-+

0x0000_0001

0x0000_0000

18

Unsigned Integer Representations

. 6.2.6.2 Integer types
*vold o . . .
1 For unsigned integer types other than unsigned char, the bits of the object
3 representation shall be divided into two groups: value bits and padding bits (there need
: ba S1C ty pe = not be any of the latter). If there are N value bits, each bit shall represent a different
e char power of 2 between 1 and 2"', so that objects of that type shall be capable of
. . representing values from 0 to 2" —1 |using a pure binary representation| this shall be
*slgne d inte gers known as the value representation. The values of any padding bits are unspecified.”
* unSign ed int egers Values stored in unsigned bit-fields and objects of type unsigned char shall be
e floatin g-po int represented using afpure binary notationl'g)
ISO Standard 9899:201x
*enumerated types
. “Pure Binary Notation”
derived types 4
* arrays uint64_t function(void) oxffff ffff ffff ffff
{ ¥
[
structures uint64 t a = ULONG_MAX;
—_— J
° -Functions return a + b; // overflow =
. } Ox0000 0000 0000 _0000
* pointers SR ——

19

C’s Type System

evoid

*basic types
* char
*signed integers
*unsigned integers
* floating-point

*enumerated types

derived types
e arrays
* structures
e unions
 functions
* pointers

10 There are three real floating types, designated as float, double, and long
double.*?) The set of values of the type £loat is a subset of the set of values of the
type double; the set of values of the type double is a subset of the set of values of the
type long double.

ISO Standard 9899:201x

Standard floating-point types
The following three types and their cv-qualified versions are collectively called standard floating-point types.

float — single precision floating-point type)] Usually IEEE-754 binary32 format &.
double — double precision floating-point type. Usually IEEE-754 binary64 format .
long double — extended precision floating-point type. Does not necessarily map to types mandated by |[EEE-754.

e |[EEE-754 binaryl128 format & is used by some HP-UX, SPARC, MIPS, ARM64, and z/OS implementations.

e The most well known IEEE-754 binary64-extended formatd is x87 80-bit extended precision format . It is used by
many x86 and x86-64 implementations (a notable exception is MSVC, which implements Tong double in the same
format as double, i.e. binary64).

s On PowerPC double-double & can be used.

https://en.cppreference.com/w/cpp/language/types

20

Boolean (bool)

evoid * C has no built-in “Boolean” type
ebasic types Recall:
Memory is byte addressable
* char
*signed integers aaar 0beeeo_0001 }
. . . addr + 1 ©boeee_0001 Every address has 8 bits
unsighed integers i s 2h0000 0001

* floating-point
enumerated types
derived types

* C only has values that are “zero” vs “not zero”

/* @ == FALSE */ /* 19 == TRUE */
e arrays if(0) {} if(-1) {}
e structures if$42)§} i'F§42§{}
o if(6 - 6) {} if(le) {}
un10n§ if(2 == 9) {} if(3 == 3) {}
e functions if(8 < 1) {} if(1 < 8) {}

e pointers S if(“a’) {}

Boolean (bool)

evoid

basic types
* char
signed integers
unsigned integers
* floating-point

enumerated types

derived types
e arrays
* structures
e unions
 functions
* pointers

1

6.3.1.2 Boolean type

When any scalar value is converted to _Boo1, the result is 0 if the value compares equal

to 0; otherwise, the result is 1.5%)

2

An object declared as type Bool is large enough to store the values 0 and 1.

ISO 9899:2011

#tinclude <stdbool.h>

void func(void)

{
}

bool a = true;

&a

&a+1

*<stdbool.h> defines a “Boolean” you can use

<stdbool.h>
36 #define bool _Bool
37 #define true 1
38 #define false @
https://github.com/gcc-

mirror/gcc/blob/master/gcc/ginclude/stdbool.h

©bo0LO_0001

22

Basic Types: Agenda

evoid

basic types
* char
signed integers
unsigned integers
* floating-point

*enumerated types

derived types
* arrays
e structures
e unions
e functions
* pointers

Overview
Format strings
Initialization
Arithmetic

Type casting

23

Printing Objects’ Values

* Printing objects requires converting representations to encoded text
 Imagine doing this manually...

char c
Ox20

short s

| exb2a
int i

oxf4eb931a

How to interpret
the representation

8-bit signed number

8-bit unsigned number

4.4 fixed-point

Some crazy custom 8-bit float

X

How to
show the value

Binary

Hex

Decimal

Scientific notation

Text/codepoints
« ASCIl, Unicode, etc.

 Instead, the C standard library provides one highly-configurable function

24

int printf(const char *format,

Input:

cee);

\

printf("Color 05

Number %d, Float

%3.21",

o aeVs

Output: Color red, Number 123456, Float 3.14

1] r.ed] ,

By I, Surachit, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=2449455

123456, 3.14);

25

Format Strings

* It's worth learning the printf() family of functions

- printf(3) - Linux man page

%-
%

5\
N
N e

Name

dlenet printf, fprintf, sprintf, snprintf, vprintf, vfprintf, vsprintf, vsnprintf - formatted output conversion

| Synopsis Output to the terminal

#include <stdio.h>
linux docs

e int printf{const char *format]...); /
page load time | .
int fprintf(FILE *stream.l const char *format] ...);
: I] *str | har *fcrrmaEEI...)'
world sunlight int sprintf{char *str,Jconst c E .
moon phase int snprintf(char *str, size_t size,|const char *format)]...); OUtPUt toa Stl‘lng

trace aexnlorer

Output to afile

Let’s take a look at format strings ”

Format Strings

* Specific “format specifiers” for every type you'd like to print

#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>

int main(int argc, char *argv[])
{
char ¢ = 'c';
printf("%c\n\n", c);

signed int s = -0x2;
printf("%d\n", s);
printf("%x\n\n", s);

unsigned int u = ©Oxc@decafe;
printf("%u\n", u);
printf("%x\n\n", u);

int64_t i = -683;
printf("%ld\n", 1i);
printf("%1lx\n\n", i);

float f = -0.000001;
printf("%f\n",);

A mp2099@ilabz: ~fcs211 X + - O

$ /common/system/
rlscvlfhlnfrlscvﬁﬂ unknown-elf-gcc —o printf pri
ntf.c

$./printf
c

-2
FEfffffe

3235826LU38
cBdecafe

—-683
FEFFFFEFFEFFFASS

—0.6800001

27

Format Specifiers

* Just look up the specifiers and eventually you'll learn the basic ones

specifier

Output Example
dori [Signed decimal integer 392
U Unsigned decimal integer 7235
o Unsigned octal 616
i Unsigned hexadecimal integer 7fa
K Unsigned hexadecimal integer (uppercase) TFA
f Decimal floating point, lowercase 392.65
F Decimal floating point, uppercase 392.65
e Scientific notation (mantissa/exponent), lowercase 3.9265e+2
E Scientific notation (mantissa/exponent), uppercase 3.9265E+2
i Use the shortest representation: %e or %f 392.65
G Use the shortest representation: %E or %F 392.65
A Hexadecimal floating point, lowercase -@xc.98fep-2
A Hexadecimal floating point, uppercase -@XC.98FEP-2
ic Character a
s String of characters sample
P Pointer address bE660006

MNothing printed.
The corresponding argument must be a pointer to a signed int.
The number of characters written so far is stored in the pointed location,

]

A % followed by another % character will write a single % to the stream.

https://cplusplus.com/reference/cstdio/printf/

28

Basic Types: Agenda

evoid

basic types
* char
signed integers
unsigned integers
* floating-point

*enumerated types

derived types
* arrays
e structures
e unions
e functions
* pointers

Overview
Format strings
Initialization
Arithmetic

Type casting

29

Undefined Default Value

* C objects have no default value
* Undefined (garbage) until explicitly initialized
* Basically, whatever was leftover in memory

*But... C will let you use uninitialized objects ®

#include <stdlib.h>
#include <stdio.h>

#define ARRAY_SIZE 10

int main(int argc, char *argv[])
{
long array[ARRAY_SIZE];
for(int 1 = @; i < ARRAY_SIZE; i++)
printf("array[%d] = @x%1x\n", 1, array[i]);
return EXIT_SUCCESS;

array[0]
array[1]
array[2]
array[3]
array [u]
array[5]
array[6]
array[7]
array[8]
array[9]

array[0]
array[1]
array[2]
array[3]
array[U]
array[5]
array[6]
array[7]
array[8]
array[9]

array[0]
array[1]
array[2]
array[3]
array[U]
array[5]
array[6]
array[7]
array[8]
array[9]

Bx555f5bfas50oLB
OxT7f3Paea9c83c
0x6f0
BxTffe307a7629
BxTffe307ef000
Bxleleleeeese
Bx2

8x178bfbff
BxTffe307a7639
Ox6L

Ox5629bbdb70U0
Ox7+dB8de9dus3c
Ox6+0
OxTFFf3febUllo
OxT7TH3ffebopd
0x10101000060
Bx2

Ox178bfbf+
OxTFf3fe5uUl29
Ox6Ll

Bx561eblU5330LU0
OxT7f3f3abcf83c
Bx6f0
Ox7fff6l1fc25a9
OxTFff61fe5000
Bxleleleeeese
Bx2

8x178bfbff
BxTFFf61fc25b9
Bxbel

$./uninitialized

$./uninitialized

$./uninitialized

Initialization: Different Bases

*Integer constants can be in:
*Base 8: 0123 // octal
*Base 10: 123 // decimal
*Base 16: 0x123 // hexadecimal

#include <stdlib.h>
#include <stdio.h>

. . . : $ /common/system/riscvi/
int maln(lnt argc, char *anV[]) buﬁtwcﬁﬂtmhmwnelfgcc -0 constant constant.c
{ : $./constant

int array[4] = {123, 0123, 0x123, -0x123}; :

for(int 1 = 0; 1 < 4; i++) : 123

: fffffedd

printf("%d : %x\n", array[i], array[i]);
return EXIT_SUCCESS;

31

Initialization: Constant Types

* Constants are positive integers by default (even character literals, e.g., “a’)

* If you want anything else, you need to provide a suffix
* Expressions such as “-1” apply the minus operator to the integer value

Bunch of rules

suffix

no suffix

uorlU

lorlL

both 1/L
and u/U

1lorlLL

both
1/LL
and u/U

Types allowed for integer constants

decimal bases

int

long int

unsigned long int (until C99)
long long int (since C99)

unsigned int

unsigned long int

unsigned long long int (since C99)
long int

unsigned long int (until C99)

long long int (since C99)

unsigned long int

unsigned long long int (since C99)

long long int (since C99)

unsigned long long int (since C99)

other bases
int
unsigned int
long int
unsigned long int
long long int (since C99)
unsigned long long int (since C99)
unsigned int
unsigned long int
unsigned long long int (since C99)
long int

unsigned long int
long long int (since C99)
unsigned long long int (since C99)

unsigned long int

unsigned long long int (since C99)

long long int (since C99)
unsigned long long int (since C99)

unsigned long long int (since C99)

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char *argv[])
{
int 1 = 1;
unsigned int ui = 1lu;
long int 1 = 11;
unsigned long int ul = 1ul;
long long int 11 = 111;

unsigned long long int ull = 1ull;

return EXIT_SUCCESS;

https://en.cppreference.com/w/c/language/integer_constant

32

Basic Types: Agenda

evoid

basic types
* char
signed integers
unsigned integers
* floating-point

*enumerated types

derived types
* arrays
e structures
e unions
e functions
* pointers

Overview
Format strings
Initialization
Arithmetic

Type casting

33

Operations on Basic Types

evoid

basic types
* char
signed integers
unsigned integers
* floating-point

enumerated types

derived types
e arrays

structures

e unions

functions

pointers

cppreference.com Create acco

Page Discussion Standar

C (Clanguage Expressicns

Arithmetic operators

Arithmetic operators apply standard mathematical operations to their operands.

Reason: consider a more general-purpose ToC for this and other tables that cover

This section is incomplete
multiple topics

unary plus the value of a after promotions
unary minus - the negative of a
addition a+b the addition of a and b
subtraction a-b the subtraction of b from a
product a*h the product of a and b
division a,/ b the divisionof a by b
remainder a % b |the remainder of a divided by b
bitwise NOT ~a the bitwise NOT of a
bitwise AND a&b the bitwise AND of a and b

bitwise OR alb the bitwise OR of a and b BitWise arithmetic

bitwise XOR a™b the bitwise XOR of aand b
bitwise left shift | a == b a left shifted by b

bitwise right shift a >= b a right shifted by b

Common arithmetic

34

Arithmetic

*We are operating on N-bit numbers: all arithmetic is modulo 2"

uint8_t: 129 uint8_t: 127
int8_t: -127 int8_t: 127
uint8 t: 129 + 127 = 256 % 256
1000 0001 + 0111 1111 = 0000 00O int8 t: -127 + 127 = 0 % 256
_ uint8 t: 129 - 127 = 2 % 256
1000 0001 - 0111 1111 = 0000 0010 int8 t: -127 - 127 =-254 % 256

16383 % 256
-16129 % 256 |

uint8 t: 129 * 127
1111 1111 | rFnts t: -127 * 127

1000 0001 X 0111 1111

signed overflow = undefined behavior

truncation (integer division)

0000 0001 uint8_t: 129 / 127
ffff ffff int8_t: -127 / 127

1.815/48——

1000 0001 | / | @111 1111

-1.0

35

Bitwise Operations: Bit Shift

* Sometimes, we want to manipulate bits directly

uint8 _t: 6 uint8_t: 2 uint8_t: 12
0000 0110 X 0000 0010 = 0000 1100 (6 * 2) == (6 << 1)
(6 * 4) == (6 << 2)
| “shift” all the bits left T "t
uint8 t: 6 uint8 t: 2 uint8 _t: 3
0000 0110 / 0000 0010 = 0000 0011 (6 / 2) == (6 >> 1)
(6 / 4) == (6 >> 2)
| “shift” all the bits right T te

* Unsigned values only! Shifting a signed type with a negative value:
* << is undefined
* >> is implementation defined

Bitwise Operations: Bit-Parallel Logic

*We can use Boolean algebra operators bit-by-bit

AND OR XOR NOT
0 &0 =0 | 0 =0 "0 =0 ~0 = 1
1&0 =20 1| e=1 120 =1 ~1 = 0
&1 =20 o | 1=1 e ~"1=1
1&1=1 1]1=1 1~1=20
Logical
oxa5 && Oxfo = 1
oxa5 || oxfo = 1
1010 0101 1010 0101 1010 0101 loxfe = ©
N ~
& Bitwise
1111 0000 1111_0000 1111_0000 1111_0000 Oxa5 & OxfO — Oxad
= = = = oxa5 | Oxfo = Oxf5
Oxa5 ~ Oxfe = Ox55
1010 0000 1111 o101 9101 0101 0000 1111 - 0xf0 = OxOf

37

Bitwise Operations: Bit Masking

*We can get / set specific bits by combining shift/and/or

0000_0101
(| 1010_0101 | >> 5) & | 0000_0001 | = | 000O_00O1 (oxa5 >> 5) & 1 =1
(| 1010_0101 | >> 3) & | 0000_0001 | = | 000O_0LOVL (0xa5 >> 3) & 1 = 0
0001_0100
0000_1000
1010 0101 | | (| eeee_oee1l | << 3) = | 1010 1101 oxa5 | (1 << 3) = @xad
1010 0101 | | (| 0000_oce01 | << 6) = | 1110_o101 oxa5 | (1 << 6) = Oxe5

v

0010_0000

Basic Types: Agenda

evoid

basic types
* char
signed integers
unsigned integers
* floating-point

*enumerated types

derived types
* arrays
e structures
e unions
e functions
* pointers

Overview
Format strings
Initialization
Arithmetic

Type casting

39

Integer Type Casting

e Convert one type to another

uint32 t x
uintéd t y

int32 t x
intéd4 t vy

35
(uinte4d t)x;

INT32_ MIN;
(int64 _t)x;

&Xx

0x0000_0003

OX0000 0000 0000 0003

0x8000_0000

oxffff_ffff 8000 0000

40

Implicit Casting

*Recall: literals have default type “unsigned int”
* The compiler implicitly casts for you as needed

uinté4 t x = 3; — yint64 t y = (uinted _t)3;

* This can cause undefined behavior

uinté4 t x = (1 << 40); =» uint6d4 t x = (uint6d t)(1 << 40);

D e——
l fix undefined behavior:
shifting beyond object width
uinté4 t x = (1lu << 40);
uint64 t x = ((uint64 t)1 << 40);

41

Integer Casting Rules (1/2): Representable

* If the new type can represent the value, the value is preserved

int32 t x = 3; &x | 0x0000_0003
uinté4 t y = (uint64 t)x; &y | 0x0000 0000 00O 0003

int32 t x = -3; &x | oxffff fffd

int64 t y = (int64 t)x; &y | oxffff ffff ffff fff3
int64 t x = -3; &x | oxffff ffff ffff fff3
int32 t y = (int32 t)x; &y | oxffff fff3

uint8 t x = 253; &x | oxfd

unt64 t y = (uinté64 _t)x; &y | 0x0000_ 0000 0000 00Fd

Integer Casting Rules (2/2): Not Representable

*If the new type canNOT represent the value:

Unsigned + Same/Narrower: Truncate

int32 t x = INT_MAX; 8x
uint8 t y = (uint8_ t)x; &y
int8 t x = -3 _MAX; 8x
uint8 t y = (uint8 t)x; &y

Ox7FFf_ffff

Oxff

Oxfd

Oxfd

Unsigned + Wider: Sign Extend

ints_t x = -3; &
uint32 t y = (uint32_t)x; &y

Oxfd

oxfff_fffd

Signed: Implementation Defined

Don’t do this ©

43

Next Week

Derived Types
*Expressions, operations, and constants

CS 211: Intro to Computer Architecture
5.1: C Data Representations

Minesh Patel
Spring 2025 — Tuesday 18 February

	Default Section
	Slide 1: CS 211: Intro to Computer Architecture 5.1: C Data Representations
	Slide 2: Announcements
	Slide 3: Reference Material
	Slide 4: Foreword
	Slide 5: Agenda
	Slide 6: Why Does C Have Types?
	Slide 7: Void Types
	Slide 8: Void vs. Unknown Function Arguments
	Slide 9: Basic Types: Agenda
	Slide 10: Basic Types
	Slide 11: Character Types
	Slide 12: Integer Types
	Slide 13: Aside: Undefined vs. Implementation-Defined Behavior
	Slide 14: Aside: Undefined vs. Implementation-Defined Behavior
	Slide 15: Aside: Avoid Undefined Behavior
	Slide 16: Aside: Avoid Implementation-Defined Behavior
	Slide 17: Aside: Avoid Implementation-Defined Behavior
	Slide 18: Signed Integer Representations
	Slide 19: Unsigned Integer Representations
	Slide 20: C’s Type System
	Slide 21: Boolean (bool)
	Slide 22: Boolean (bool)
	Slide 23: Basic Types: Agenda
	Slide 24: Printing Objects’ Values
	Slide 25: int printf(const char *format, ...);
	Slide 26: Format Strings
	Slide 27: Format Strings
	Slide 28: Format Specifiers
	Slide 29: Basic Types: Agenda
	Slide 30: Undefined Default Value
	Slide 31: Initialization: Different Bases
	Slide 32: Initialization: Constant Types
	Slide 33: Basic Types: Agenda
	Slide 34: Operations on Basic Types
	Slide 35: Arithmetic
	Slide 36: Bitwise Operations: Bit Shift
	Slide 37: Bitwise Operations: Bit-Parallel Logic
	Slide 38: Bitwise Operations: Bit Masking
	Slide 39: Basic Types: Agenda
	Slide 40: Integer Type Casting
	Slide 41: Implicit Casting
	Slide 42: Integer Casting Rules (1/2): Representable
	Slide 43: Integer Casting Rules (2/2): Not Representable
	Slide 44: Next Week
	Slide 45: CS 211: Intro to Computer Architecture 5.1: C Data Representations

