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Announcements

•Ongoing
•WA10: due Friday (May 2) @ 11:59 pm

•PA5: due Monday (May 5) @ 11:59 pm
• Autograder: Today!

•Upcoming
•Final Exam: May 14th

• Pending: List of topics

• Pending: Practice questions for this half of the semester
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Recall: Caches Are Datapath Elements
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Recall: Instruction Cache (I$) and Data Cache (D$)
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AMD Zen 5 (Ryzen 9000) Die Shot

5https://tpucdn.com/img/AFnVIoGFWSCE6YXO_thm.jpg



Agenda

•Simulating Cache Behavior

•Types of Cache Misses
•Cold Misses
•Set Associative Caches

•Course Wrap-Up



Recall: Cache Control Operations
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Cache Conflicts

•Conflict: different addresses map to the same set (hash collision)
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li   a0, 0x130
ld   a5, 0(a0)

li   a0, 0x280
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li   a0, 0x15f
sb   a5, 0(a0)

li   a0, 0x8c0
sw   a5, 0(a0)



Cache Simulation Example

•Assume 8-bit addresses
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Cache Simulation Example: Nonzero Byte Index

•Assume 8-bit addresses
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Agenda

•Simulating Cache Behavior

•Cache Misses and Performance
•Cold Misses
•Set Associative Caches

•Course Wrap-Up



3 Capacity Miss: cache is too small 

2 Conflict Miss: blocks compete for a set

1 Cold (compulsory) Miss: never seen this block before

Three Types of Cache Misses
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• Unavoidable without prediction

• Can make the cache bigger
• Can change the set index hash function
• Can allow (set associative caches)



Agenda

•Simulating Cache Behavior

•Cache Misses and Performance
•Cold Misses
•Set Associative Caches

•Course Wrap-Up



Mitigating Cold Misses

•Requires predicting that we need the block beforehand 
• “block size” is already a form of prediction
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Fancier Prediction: Prefetching

•Prefetching: fill data in the cache before we even try to access it

15

Main 
Memory

CPU Cache

Prefetcher

Monitors loads/stores 
and looks for predictable patterns

•Lots of prediction algorithms out there:
• E.g., Replay sequences (e.g., A, B, C, B, A, ..., A, B, C, <?>)
• E.g., Extrapolate patterns (e.g., A, A+2, A+4, <?>)



Reasoning about Hits/Misses

•What are the upper/lower bounds 
on memory performance?
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void func(uint64_t *a, uint64_t N) 
{ 

for(int i = 0; i < N; i++) 
a[i]++; 

}

C Code

func: 
slli a1, a1, 3 
add  a1, a0, a1 

.done: 
bne  a0, a1, .loop 
ret 

.loop: 
ld   a5, 0(a0) 
addi a0, a0, 8 
addi a5, a5, 1 
sd   a5, -8(a0) 
j    .done

ASM Code



Average Cache Performance

•More reasonable estimate: average memory access latency
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tavg = thit + %miss x tmiss

The cost of a miss
(“miss penalty”)

Depends on the application
 (its memory access pattern)

Depends on the hardware
 (cache capacity, block size, etc.)

Hennessey and Patterson, “A Quantitative Approach to Computer Architecture” 6/E, Chapter 2.1



%miss (Miss Rate) Example

•Assume 8-bit pointers
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Example Performance
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Example Performance
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Memory Hierarchy Performance

21CS:APP 3/E, “Section 6.6”

https://csapp.cs.cmu.edu/3e/home.html



A Word of Caution: Amdahl’s Law

•For any feature (e.g,. faster caches, faster CPUs):
• End-to-end benefit is limited by how often you’re using that feature

• Fast memory accesses only help during memory accesses ☺
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Example:
• Assume 50% of execution time is spent on memory
• You speed up memory by 10x
• How much faster is your system?

tnew = told x 0.5 + told x 0.5 x 0.1 
    = told x 0.55
    = told x 0.55 => 1.8x total speedup



Agenda

•Simulating Cache Behavior

•Types of Cache Misses
•Cold Misses
•Set Associative Caches

•Course Wrap-Up



3 Capacity Miss: cache is too small 

2 Conflict Miss: blocks compete for a set

1 Cold (compulsory) Miss: never seen this block before

Three Types of Cache Misses
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• Unavoidable without prediction

• Can make the cache bigger
• Can change the set index hash function
• Can allow (set associative caches)



Cache Miss Penalty

•For every miss, we fetch an entire cache block
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Extreme Example: One Giant Block

•We prefetch ~2MB of data on every cold miss

•Q: Good or bad idea?
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Extreme Example: Many Tiny Blocks

•We never prefetch based on cold misses

•Q: Good or bad idea?
27

Main 
Memory

Register 
File

Cache

Set 0 <8 B>

Data Tag State

Set 1 <8 B>

Set 2 <8 B>

Set 262144 <8 B>

...

1-8B 8B

a20a19...a4a3 a2a1a0a63...a21load/store address
(i.e., some pointer)

Byte IndexSet IndexTag



Set Associative Caches

•What if we kept more than one block per set?
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Set Associativity

•Key Idea: Any block can go anywhere in the set

•Q: how do I decide where it goes?
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Associativity Improves Miss Rates

30Harris & Harris, "Digital Design and Computer Architecture: RISC-V Edition"



3 Capacity Miss: cache is too small 

2 Conflict Miss: blocks compete for a set

1 Cold (compulsory) Miss: never seen this block before

Three Types of Cache Misses
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• Unavoidable without prediction

• Can make the cache bigger
• Can change the set index hash function
• Can allow (set associative caches)



Larger and Larger Caches: $$$
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Intel NetBurst (2000)
L1 cache 8-16 KB

L2 cache 128-4096 KB

L3 cache 4-16 MB

https://chipsandcheese.com/p/intels-netburst-
failure-is-a-foundation-for-success

Intel 4004 (1971)

https://en.wikichip.org/wiki/intel/mcs-4/4004

No caches

Intel Golden Cove (2021)

https://locuza.substack.com/p/die-
walkthrough-alder-lake-sp-and

x8
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CS 211: Intro to Computer Architecture

• Unfortunately, CS 211 won’t teach you how to build a computer
• Need a few more classes for that ☺

• Instead, we’ll scratch the surface to prepare you for more



Where To Go Next

35

Official course title:

Intro to Computer Architecture

A more appropriate title:

Intro to Computing Systems



Goals of CS 211
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#3: Gain a holistic view of the system

#2: Understand computing abstractions 
(and know when to break them)

#1: Know your tools
(and their tradeoffs)



Where To Go Next?
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Real-world Demands

Real-world Constraints
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is extremely broad

Ask yourself:
Which topics did you really enjoy?



Where To Go Next? Anywhere.
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Advanced Computer Architecture

Operating Systems

Systems Programming 

Compiler Design

Digital Logic Design

Chip Design (e.g., VLSI)

Networking

Distributed Systems

Programming Languages / Runtimes

Embedded Systems

Hardware Accelerators

C++ / Rust / other C-derived languages

Parallel Programming 

Computer / Hardware Security

And many more…
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SIRS Survey

•Very helpful for next year’s version of CS 211 ☺
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https://sirs.ctaar.rutgers.edu/blue

https://sirs.ctaar.rutgers.edu/blue
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