
CS 211: Intro to Computer Architecture
14.2: Caching 3 & Course Wrap-Up

Spring 2025 – Thursday 1 May

Minesh Patel

Announcements

•Ongoing
•WA10: due Friday (May 2) @ 11:59 pm

•PA5: due Monday (May 5) @ 11:59 pm
• Autograder: Today!

•Upcoming
•Final Exam: May 14th

• Pending: List of topics

• Pending: Practice questions for this half of the semester

2

Recall: Caches Are Datapath Elements

3

Set 0

Set 1

Set 2

Set 3

Data Tag State

512

8/16/32/64

Data

z/sext
byte_index

A
N
D
2

56

=

2

Hit?

!=
Invalid

mem_width

set_index

tagCACHE

rd_data

wr_data

addr

Recall: Instruction Cache (I$) and Data Cache (D$)

4

PC

I$
GPRs

ALU

Control Logic

+
4

alu_op

B

inst[31:0]

reg_wr_en

Imm. Gen.

B_sel

rs2

imm

A

FETCH DECODE AGEX MEMORY WRITEBACK

D$

$_rd_en
$_wr_en

wb_sel

alu

memrd_data

wr_data

addr

rs2

rs1
rd

rs1_id
rs2_id
rd_id

addr

inst

mem_width

z/sext

imm_sel

BR
CMP

br_cond

A_sel

pc

rs1

pc_sel

pc+4

alu

br_taken

pc+4

AMD Zen 5 (Ryzen 9000) Die Shot

5https://tpucdn.com/img/AFnVIoGFWSCE6YXO_thm.jpg

Agenda

•Simulating Cache Behavior

•Types of Cache Misses
•Cold Misses
•Set Associative Caches

•Course Wrap-Up

Recall: Cache Control Operations

7

Determine
Set Index

CLEAN Check
block state

INVALID

DIRTY

Perform
Read/Write

“Cache Fill”
Copy data into cache

Check
tag

mismatch

match

“Cache Writeback”
Write dirty data to mem

Check
tag

match

mismatch

Determine
Set Index

CLEAN Check
block state

INVALID

DIRTY

Perform
Read/Write

“Cache Fill”
Copy data into cache

Check
tag

mismatch

match

“Cache Writeback”
Write dirty data to mem

Check
tag

match

mismatch

Cache Hit (tag match) Cache Miss (tag mismatch)

Cache Conflicts

•Conflict: different addresses map to the same set (hash collision)

8

Main
Memory

Register
File

Cache

Set 0

Set 1

Set 2

Set 3

...

...

...

...

0x3

0x12

0x0

0x2

CLEAN

CLEAN

DIRTY

DIRTY

Data Tag State

1-8B 64B

li a0, 0x130
ld a5, 0(a0)

li a0, 0x280
lh a5, 0(a0)

li a0, 0x15f
sb a5, 0(a0)

li a0, 0x8c0
sw a5, 0(a0)

Cache Simulation Example

•Assume 8-bit addresses

9

Cache (4 Sets; 1B blocks)

Set 0

Set 1

Set 2

Set 3

Data Tag State

lb @ 0xf
sb Q @ 0x1
sb R @ 0xf
lb @ 0x9
sb S @ 0x7
sb T @ 0x2
lb @ 0x7

Memory Access Trace

Memory
0x00

0x0f

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

a1a0 -a3a2

Byte IdxSet IdxTag

Cache Simulation Example: Nonzero Byte Index

•Assume 8-bit addresses

10

lb @ 0xf
sb Q @ 0x1
sb R @ 0x4

Cache (4 Sets; 1B blocks)

Set 0

Set 1

Data Tag State

Memory Access Trace

a1 a0a3a2

Byte IdxSet IdxTag

Memory
0x00

0x0f

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Agenda

•Simulating Cache Behavior

•Cache Misses and Performance
•Cold Misses
•Set Associative Caches

•Course Wrap-Up

3 Capacity Miss: cache is too small

2 Conflict Miss: blocks compete for a set

1 Cold (compulsory) Miss: never seen this block before

Three Types of Cache Misses

12

• Unavoidable without prediction

• Can make the cache bigger
• Can change the set index hash function
• Can allow (set associative caches)

Agenda

•Simulating Cache Behavior

•Cache Misses and Performance
•Cold Misses
•Set Associative Caches

•Course Wrap-Up

Mitigating Cold Misses

•Requires predicting that we need the block beforehand
• “block size” is already a form of prediction

14

Main
Memory

Register
File

Cache
1-8B 64B

Block SizeData

Fancier Prediction: Prefetching

•Prefetching: fill data in the cache before we even try to access it

15

Main
Memory

CPU Cache

Prefetcher

Monitors loads/stores
and looks for predictable patterns

•Lots of prediction algorithms out there:
• E.g., Replay sequences (e.g., A, B, C, B, A, ..., A, B, C, <?>)
• E.g., Extrapolate patterns (e.g., A, A+2, A+4, <?>)

Reasoning about Hits/Misses

•What are the upper/lower bounds
on memory performance?

16

8B Main
Memory

Register
File

Cache
64B

thit= 1 ns
thit= 50 ns

void func(uint64_t *a, uint64_t N)
{

for(int i = 0; i < N; i++)
a[i]++;

}

C Code

func:
slli a1, a1, 3
add a1, a0, a1

.done:
bne a0, a1, .loop
ret

.loop:
ld a5, 0(a0)
addi a0, a0, 8
addi a5, a5, 1
sd a5, -8(a0)
j .done

ASM Code

Average Cache Performance

•More reasonable estimate: average memory access latency

17

tavg = thit + %miss x tmiss

The cost of a miss
(“miss penalty”)

Depends on the application
 (its memory access pattern)

Depends on the hardware
 (cache capacity, block size, etc.)

Hennessey and Patterson, “A Quantitative Approach to Computer Architecture” 6/E, Chapter 2.1

%miss (Miss Rate) Example

•Assume 8-bit pointers

18

Cache (4 Sets; 1B blocks)

Set 0

Set 1

Set 2

Set 3

Data Tag State

lb @ 0xf
sb Q @ 0x1
sb R @ 0xf
lb @ 0x9
sb S @ 0x7
sb T @ 0x2
lb @ 0x7

Memory Access Trace

Memory
0x00

0x0f

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

a1a0 -a3a2

Byte IdxSet IdxTag

Miss (cold)
Cold miss
Hit
Conflict miss
Conflict miss
Cold miss
Hit

71.4% miss rate

Example Performance

19

Main
Memory

Register
File

Cache
1-8B 64B

thit= 1 ns

thit= 50 ns

tavg = thit + %miss x tmiss

Example Performance

20

Main
Memory

Register
File

L1 Cache
1-8B 64B

L2 Cache

thit= 1 ns

thit= 10 ns
thit= 50 ns

64B

tavg = thit + %miss x tmiss

Memory Hierarchy Performance

21CS:APP 3/E, “Section 6.6”

https://csapp.cs.cmu.edu/3e/home.html

A Word of Caution: Amdahl’s Law

•For any feature (e.g,. faster caches, faster CPUs):
• End-to-end benefit is limited by how often you’re using that feature

• Fast memory accesses only help during memory accesses ☺

22

Example:
• Assume 50% of execution time is spent on memory
• You speed up memory by 10x
• How much faster is your system?

tnew = told x 0.5 + told x 0.5 x 0.1
 = told x 0.55
 = told x 0.55 => 1.8x total speedup

Agenda

•Simulating Cache Behavior

•Types of Cache Misses
•Cold Misses
•Set Associative Caches

•Course Wrap-Up

3 Capacity Miss: cache is too small

2 Conflict Miss: blocks compete for a set

1 Cold (compulsory) Miss: never seen this block before

Three Types of Cache Misses

24

• Unavoidable without prediction

• Can make the cache bigger
• Can change the set index hash function
• Can allow (set associative caches)

Cache Miss Penalty

•For every miss, we fetch an entire cache block

25

Bigger block = higher miss penalty

64B?

128B?

256B?

Main
Memory

Register
File

Cache
1-8B 64B

Extreme Example: One Giant Block

•We prefetch ~2MB of data on every cold miss

•Q: Good or bad idea?
26

Main
Memory

Register
File

Cache

Set 0 <2 MB>

Data Tag State
1-8B 2MB

- a20a19...a1a0a63a62...a22a21load/store address
(i.e., some pointer)

Byte IndexSet IndexTag

Extreme Example: Many Tiny Blocks

•We never prefetch based on cold misses

•Q: Good or bad idea?
27

Main
Memory

Register
File

Cache

Set 0 <8 B>

Data Tag State

Set 1 <8 B>

Set 2 <8 B>

Set 262144 <8 B>

...

1-8B 8B

a20a19...a4a3 a2a1a0a63...a21load/store address
(i.e., some pointer)

Byte IndexSet IndexTag

Set Associative Caches

•What if we kept more than one block per set?

28

.
.
.

B0
B0
B0
B0

B0

Set 0

Set 1

Set S-1

Direct-Mapped

Way 0

B1
B1

B1

.
.
.

B0
B0

B0

Set 0

Set 1

Set S-1

Set-Associative

Way 0 Way 1

B1B0

Fully-Associative

BK-1
...

Way 0 Way 1 Way K-1

Helps alleviate hash collisions

Set Associativity

•Key Idea: Any block can go anywhere in the set

•Q: how do I decide where it goes?

29

Data

Set-Associative Cache

Way 0

Tag State Data

Way 1

Tag State Data

Way 2

Tag State Data

Way 3

Tag State

S
e
t

N

.
.
.

.
.
.

Main
Memory

???

Associativity Improves Miss Rates

30Harris & Harris, "Digital Design and Computer Architecture: RISC-V Edition"

3 Capacity Miss: cache is too small

2 Conflict Miss: blocks compete for a set

1 Cold (compulsory) Miss: never seen this block before

Three Types of Cache Misses

31

• Unavoidable without prediction

• Can make the cache bigger
• Can change the set index hash function
• Can allow (set associative caches)

Larger and Larger Caches: $$$

32

Intel NetBurst (2000)
L1 cache 8-16 KB

L2 cache 128-4096 KB

L3 cache 4-16 MB

https://chipsandcheese.com/p/intels-netburst-
failure-is-a-foundation-for-success

Intel 4004 (1971)

https://en.wikichip.org/wiki/intel/mcs-4/4004

No caches

Intel Golden Cove (2021)

https://locuza.substack.com/p/die-
walkthrough-alder-lake-sp-and

x8

Agenda

•Simulating Cache Behavior

•Types of Cache Misses
•Cold Misses
•Set Associative Caches

•Course Wrap-Up

CS 211: Intro to Computer Architecture

• Unfortunately, CS 211 won’t teach you how to build a computer
• Need a few more classes for that ☺

• Instead, we’ll scratch the surface to prepare you for more

Where To Go Next

35

Official course title:

Intro to Computer Architecture

A more appropriate title:

Intro to Computing Systems

Goals of CS 211

36

#3: Gain a holistic view of the system

#2: Understand computing abstractions
(and know when to break them)

#1: Know your tools
(and their tradeoffs)

Where To Go Next?

Problem

Algorithm

Program

Runtime

System software

HW/SW Interface (ISA, ABI)

Microarchitecture

Logic gates

Circuits

Technology

Physics
37

Real-world Demands

Real-world Constraints

A
b

st
ra

ct
io

n
s Computer science and engineering

is extremely broad

Ask yourself:
Which topics did you really enjoy?

Where To Go Next? Anywhere.

Problem

Algorithm

Program

Runtime

System software

HW/SW Interface (ISA, ABI)

Microarchitecture

Logic gates

Circuits

Technology

Physics
38

Advanced Computer Architecture

Operating Systems

Systems Programming

Compiler Design

Digital Logic Design

Chip Design (e.g., VLSI)

Networking

Distributed Systems

Programming Languages / Runtimes

Embedded Systems

Hardware Accelerators

C++ / Rust / other C-derived languages

Parallel Programming

Computer / Hardware Security

And many more…

Acknowledgements

1. Other CS 211 instructions

2. Other instructors across the world (who inspired these materials)

39

Ramesh Balaji Nate BlumNeha Jeyaram Jerlin Yuen

Our instructional staff this semester

SIRS Survey

•Very helpful for next year’s version of CS 211 ☺

40

https://sirs.ctaar.rutgers.edu/blue

https://sirs.ctaar.rutgers.edu/blue

CS 211: Intro to Computer Architecture
14.2: Caching 3 & Course Wrap-Up

Spring 2025 – Thursday 1 May

Minesh Patel

	Default Section
	Slide 1: CS 211: Intro to Computer Architecture 14.2: Caching 3 & Course Wrap-Up
	Slide 2: Announcements
	Slide 3: Recall: Caches Are Datapath Elements
	Slide 4: Recall: Instruction Cache (I$) and Data Cache (D$)
	Slide 5: AMD Zen 5 (Ryzen 9000) Die Shot
	Slide 6: Agenda
	Slide 7: Recall: Cache Control Operations
	Slide 8: Cache Conflicts
	Slide 9: Cache Simulation Example
	Slide 10: Cache Simulation Example: Nonzero Byte Index
	Slide 11: Agenda
	Slide 12: Three Types of Cache Misses
	Slide 13: Agenda
	Slide 14: Mitigating Cold Misses
	Slide 15: Fancier Prediction: Prefetching
	Slide 16: Reasoning about Hits/Misses
	Slide 17: Average Cache Performance
	Slide 18: %miss (Miss Rate) Example
	Slide 19: Example Performance
	Slide 20: Example Performance
	Slide 21: Memory Hierarchy Performance
	Slide 22: A Word of Caution: Amdahl’s Law
	Slide 23: Agenda
	Slide 24: Three Types of Cache Misses
	Slide 25: Cache Miss Penalty
	Slide 26: Extreme Example: One Giant Block
	Slide 27: Extreme Example: Many Tiny Blocks
	Slide 28: Set Associative Caches
	Slide 29: Set Associativity
	Slide 30: Associativity Improves Miss Rates
	Slide 31: Three Types of Cache Misses
	Slide 32: Larger and Larger Caches: $$$
	Slide 33: Agenda
	Slide 34: CS 211: Intro to Computer Architecture
	Slide 35: Where To Go Next
	Slide 36: Goals of CS 211
	Slide 37: Where To Go Next?
	Slide 38: Where To Go Next? Anywhere.
	Slide 39: Acknowledgements
	Slide 40: SIRS Survey
	Slide 41: CS 211: Intro to Computer Architecture 14.2: Caching 3 & Course Wrap-Up

