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Announcements

•Ongoing
•WA9: due Friday (April 18) @ 11:59 pm

•PA5: due Monday (May 5) @ 11:59 pm

•Upcoming
•WA10: TBA: planned for Friday

•Final Exam: May 14th
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Our Mental Model (So Far)

• In reality, we have different types of memory

•Today: registers vs. caches vs. main memory

3Harris & Harris, "Digital Design and Computer Architecture: RISC-V Edition"



Agenda

•Why Is Main Memory Slow?

•Caching and the Memory Hierarchy

•Direct-Mapped Caches
•Where to Place Data
•How to Query the Cache



Semiconductor Memories

5Weste & Harris, “CMOS VLSI Design“, 4/E

Registers
& Cache

Main Memory



Main Memory vs. Registers
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Main Memory (DRAM)
Built from analog circuits

Registers (Flip-Flops)
Built from digital logic
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Main Memory vs. Registers
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Main Memory (DRAM)
Built from analog circuits

Registers (Flip-Flops)
Built from digital logic
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Even If I Were a Billionaire….

• I still couldn’t afford to keep all data in CPU registers
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$$$

$$

$

https://zjustin.wordpress.com/2016/10/11/computer-memory-reflection/

https://zjustin.wordpress.com/2016/10/11/computer-memory-reflection/


Beyond Cost: Access Latency

•Fundamentally: bigger = slower
• Electrical signals travel further
• More wire resistance
• …

•Low-capacity memories are fastest

9Wilton and Jouppi, "CACTI: An Enhanced Cache Access and Cycle Time Model," JSSC, 2002.



Beyond Cost: Density
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Dynamic RAM 
(Main Memory)

Built from analog circuits

Weste & Harris, “CMOS VLSI Design“, 4/E

Static RAM
(Registers, Caches)

Built from digital logic

Prof. Mason, ECE 410, Lecture 13.1



Beyond Cost: Energy

11Horowitz, Mark. “Computing’s Energy Problem (and What We Can Do About It),"  ISSCC, 2014.

10,000x

Energy Cost of Various CPU Operations



Cost-Performance Tradeoff

•There are other concerns too (e.g., energy, reliability, etc…)

12Harris & Harris, "Digital Design and Computer Architecture: RISC-V Edition"



It’s Just Hard to Improve Memory

13Hennessy & Patterson, “A Quantitative Approach to Computer Architecture,” 6/E., Figure 2.2

1000x worse than 1980



Agenda

•Why Is Main Memory Slow?

•Caching and the Memory Hierarchy

•Direct-Mapped Caches
•Where to Place Data
•How to Query the Cache
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Main Memory Kills Performance

•The CPU wastes lots of time just moving data
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CPU cycle: 0.5 ns

DRAM access: ~50 ns

Actually 
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Data Movement



Registers
fast / small

Main Memory
slow / big

Cache
med / med

CPU

Getting the Best of Both Worlds

•Goal: Give the illusion that main memory is large but fast
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Key idea: keep a copy of 
frequently-used data

• If we cache the right data, the CPU never goes to main memory
• Common case: accesses are at the speed of cache
• Worst case: data not in the cache



The Right Data to Cache

•A: Data that we know we will need soon (prediction problem!)
• Cache hit: data is in the cache - fast
• Cache miss: data is NOT in the cache - slow

17

Registers
fast / small

Main Memory
slow / big

Cache
med / med

Million-dollar question:
What should we cache?



read(A[0])
write(A[0])
read(A[1])

write(A[1])
... 

read(A[N-1])
write(A[N-1])

Memory Access Pattern

Choosing What to Cache

•The answer comes from studying application behavior
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void func(uint64_t *a, uint64_t N) 
{ 

for(int i = 0; i < N; i++) 
a[i]++;

}

func: 
slli a1, a1, 3 
add a1, a0, a1 

.L2: 
bne  a0, a1, .L3 
ret 

.L3: 
ld   a5, 0(a0) 
addi a0, a0, 8 
addi a5, a5, 1 
sd   a5, -8(a0) 
j    .L2

Observation 1: Re-use
Observation 2: Adjacency



Benchmarking ilab2
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li   a4, 0 
.loop:   

bge  a4, a2, .done 
ld   t1, 0(t0)   
add  a4, a4, a3
add  t0, t0, a3
j    .loop

. done:
...

for(uint64_t i = 0; i < array_size; i += stride)
temp = arr[i];



Example: Matrix Multiply (C = A*B)

20CS:APP 3/E, “Section 6.6.2”

~40x Performance



The Memory Hierarchy

21Hennessy and Patterson, “Computer Architecture” 6/E.

•Key idea: Have successively larger caches
• “Hot data” close to CPU (closer the better)
• “Cold data” far from CPU



Hit/Miss Performance

•Performance depends on whether there is a cache hit or miss
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•L1 hit:

•L1 miss + L2 hit:

•L1 miss + L2 miss + L3 hit: 

•L1 miss + L2 miss + L3 miss + Memory: 



Testing Memory/Cache Latency

23https://www.techpowerup.com/forums/threads/share-your-aida-64-cache-and-memory-benchmark-here.186338/page-99



Cache Design Questions

•Which data should we cache?

•How do we access the cache?

•Where in the cache should that data go?

•What happens when the cache is full?

•What if we modify data in the cache?
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Agenda

•Why Is Main Memory Slow?

•Caching and the Memory Hierarchy

•Direct-Mapped Caches
•Where to Place Data
•How to Query the Cache



Cache Blocks

•Caches store “blocks” of data (usually 64 bytes)

•Think about it like a smaller version of main memory
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Types of Caches

•Q: Suppose we issue an ld (8B): which block does it go in?

27Today

Direct Mapped: Exactly one place

Fully Associative: Anywhere

Set-Associative: Specific places
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Block 2

Block 3
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.
.
.

Cache
B blocks



Cache Organizations: Terminology

•Rows (sets) and columns (ways) of blocks
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Toward a Direct-Mapped Cache

•Design questions:
•Where to place data?
•How to query the cache?

29

Main 
Memory

Register 
File

Direct-Mapped Cache

Set 0

Set 1

Set 2

Set 3

Data



Agenda

•Why Is Main Memory Slow?

•Caching and the Memory Hierarchy

•Direct-Mapped Caches
•Where to Place Data
•How to Query the Cache



Main Memory
264-6 blocks

Block 0

Block 1

Block 2

Block 3

Block 258 -1

.
.
.

Mapping Data to a Direct-Mapped Cache

•Need to map every memory location to a specific set
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…

Set 0
Set 1

Set S-1

Direct-Mapped Cache
‘S’ blocks

f : addr -> set

“hash function”



Set Index Hash Function

•We could use something fancy (lots of research on this!)

•Simplest: just use bits of the address
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a8a7a6 a5a4a3a2a1a0a63... a10a964-bit address

64 Byte Block8 Sets

…

Set 0
Set 1

Set 7

Set 2
Set 3

Direct-Mapped Cache

Block Data

Set 
Index

Byte-In-Block 
Index



Visualizing the Cache Mapping
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Set 0
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But hash 
collision!



Resolving Hash Collisions

•Solution: cache both data and address
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a8a7a6 a5a4a3a2a1a0a63... a10a964-bit address

Byte-in-BlockSet Index“Tag”

…

Set 0
Set 1

Set 7

Set 2
Set 3

Direct-Mapped Cache

Data Tag

Must compare tag bits 
on every cache access 
to check for collision



Agenda

•Why Is Main Memory Slow?

•Caching and the Memory Hierarchy

•Direct-Mapped Caches
•Where to Place Data
•How to Query the Cache



Querying the Cache

•The cache must track the current state of every block
• INVALID: no data currently cached (tag is meaningless)
• CLEAN: data is cached and unmodified
• DIRTY: data is cached and modified by the CPU (doesn’t match memory)

36

Direct-Mapped Cache

Set 0

Set 1

Set 2

Set 3

Data Tag State



Querying the Cache: Cache Controller
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Determine 
Set Index

CLEAN Check 
block state

INVALID

DIRTY

Perform
Read/Write

“Cache Fill”
Copy data into cache

Check 
tag

mismatch
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“Cache Writeback”
Write dirty data to mem

Check 
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Querying the Cache: STORE Instruction

38

Main 
Memory

Register 
File

Direct-Mapped Cache

Set 0

Set 1

Set 2

Set 3

Data Tag State

func: 
// a0 = 0x100
// a1 = 0xff
sd   a1, 0(a0) 



Example: Accessing an Array

39

Main 
Memory

Register 
File

void sum(uint64_t a[10]) 
{ 
    // a = 0x100

uint64_t s = 0;
for(int i = 0; i < 10; i++) 

s += a[i];
return s;

}

Direct-Mapped Cache

Set 0

Set 1

Set 2

Set 3

Data Tag State



Example: Accessing an Array

40

Main 
Memory

Register 
File

void sum(uint64_t a[10]) 
{ 
    // a = 0x100

uint64_t s = 0;
for(int i = 0; i < 10; i++) 

s += a[i];
return s;

}

Direct-Mapped Cache

Set 0

Set 1

Set 2

Set 3

Data Tag State

a[0] = 1_0000_0000
a[1] = 1_0000_1000
a[2] = 1_0001_0000
a[3] = 1_0001_1000
a[4] = 1_0010_0000
a[5] = 1_0010_1000
a[6] = 1_0011_0000
a[7] = 1_0011_1000
a[8] = 1_0100_0000
a[9] = 1_0100_1000

read(a[0]) = MISS
read(a[1]) = HIT
read(a[2]) = HIT
read(a[3]) = HIT
read(a[4]) = HIT
read(a[5]) = HIT
read(a[6]) = HIT
read(a[7]) = HIT
read(a[8]) = MISS
read(a[9]) = HIT
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