
CS 211: Intro to Computer Architecture
13.2: Memory Access Patterns and Caching

Spring 2025 – Thursday 24 April

Minesh Patel

Announcements

•Ongoing
•WA9: due Friday (April 18) @ 11:59 pm

•PA5: due Monday (May 5) @ 11:59 pm

•Upcoming
•WA10: TBA: planned for Friday

•Final Exam: May 14th

2

Our Mental Model (So Far)

• In reality, we have different types of memory

•Today: registers vs. caches vs. main memory

3Harris & Harris, "Digital Design and Computer Architecture: RISC-V Edition"

Agenda

•Why Is Main Memory Slow?

•Caching and the Memory Hierarchy

•Direct-Mapped Caches
•Where to Place Data
•How to Query the Cache

Semiconductor Memories

5Weste & Harris, “CMOS VLSI Design“, 4/E

Registers
& Cache

Main Memory

Main Memory vs. Registers

6

Main Memory (DRAM)
Built from analog circuits

Registers (Flip-Flops)
Built from digital logic

Q

Q'

R

S

storage
capacitor

access
transistor

each stores one bit of data

Main Memory vs. Registers

7

Main Memory (DRAM)
Built from analog circuits

Registers (Flip-Flops)
Built from digital logic

Q

Q'

R

S

storage
capacitor

access
transistor

Cost

Speed

Physical Size

Expensive

Fast

Big

Cheap

Slow

Small

Even If I Were a Billionaire….

• I still couldn’t afford to keep all data in CPU registers

8

$$$

$$

$

https://zjustin.wordpress.com/2016/10/11/computer-memory-reflection/

https://zjustin.wordpress.com/2016/10/11/computer-memory-reflection/

Beyond Cost: Access Latency

•Fundamentally: bigger = slower
• Electrical signals travel further
• More wire resistance
• …

•Low-capacity memories are fastest

9Wilton and Jouppi, "CACTI: An Enhanced Cache Access and Cycle Time Model," JSSC, 2002.

Beyond Cost: Density

10

Dynamic RAM
(Main Memory)

Built from analog circuits

Weste & Harris, “CMOS VLSI Design“, 4/E

Static RAM
(Registers, Caches)

Built from digital logic

Prof. Mason, ECE 410, Lecture 13.1

Beyond Cost: Energy

11Horowitz, Mark. “Computing’s Energy Problem (and What We Can Do About It)," ISSCC, 2014.

10,000x

Energy Cost of Various CPU Operations

Cost-Performance Tradeoff

•There are other concerns too (e.g., energy, reliability, etc…)

12Harris & Harris, "Digital Design and Computer Architecture: RISC-V Edition"

It’s Just Hard to Improve Memory

13Hennessy & Patterson, “A Quantitative Approach to Computer Architecture,” 6/E., Figure 2.2

1000x worse than 1980

Agenda

•Why Is Main Memory Slow?

•Caching and the Memory Hierarchy

•Direct-Mapped Caches
•Where to Place Data
•How to Query the Cache

Year

T
im

e
 (

n
s)

CS:APP 3/E

Main Memory Kills Performance

•The CPU wastes lots of time just moving data

15Instruction latencyIn
st

ru
ct

io
n

 t
y

p
e

ALU FETCH
FETCHBEQ
FETCHLD/SD MEMORY

~100 ns

CPU cycle: 0.5 ns

DRAM access: ~50 ns

Actually
useful work

Data Movement

Registers
fast / small

Main Memory
slow / big

Cache
med / med

CPU

Getting the Best of Both Worlds

•Goal: Give the illusion that main memory is large but fast

16

Key idea: keep a copy of
frequently-used data

• If we cache the right data, the CPU never goes to main memory
• Common case: accesses are at the speed of cache
• Worst case: data not in the cache

The Right Data to Cache

•A: Data that we know we will need soon (prediction problem!)
• Cache hit: data is in the cache - fast
• Cache miss: data is NOT in the cache - slow

17

Registers
fast / small

Main Memory
slow / big

Cache
med / med

Million-dollar question:
What should we cache?

read(A[0])
write(A[0])
read(A[1])

write(A[1])
...

read(A[N-1])
write(A[N-1])

Memory Access Pattern

Choosing What to Cache

•The answer comes from studying application behavior

18

void func(uint64_t *a, uint64_t N)
{

for(int i = 0; i < N; i++)
a[i]++;

}

func:
slli a1, a1, 3
add a1, a0, a1

.L2:
bne a0, a1, .L3
ret

.L3:
ld a5, 0(a0)
addi a0, a0, 8
addi a5, a5, 1
sd a5, -8(a0)
j .L2

Observation 1: Re-use
Observation 2: Adjacency

Benchmarking ilab2

19

li a4, 0
.loop:

bge a4, a2, .done
ld t1, 0(t0)
add a4, a4, a3
add t0, t0, a3
j .loop

. done:
...

for(uint64_t i = 0; i < array_size; i += stride)
temp = arr[i];

Example: Matrix Multiply (C = A*B)

20CS:APP 3/E, “Section 6.6.2”

~40x Performance

The Memory Hierarchy

21Hennessy and Patterson, “Computer Architecture” 6/E.

•Key idea: Have successively larger caches
• “Hot data” close to CPU (closer the better)
• “Cold data” far from CPU

Hit/Miss Performance

•Performance depends on whether there is a cache hit or miss

22

•L1 hit:

•L1 miss + L2 hit:

•L1 miss + L2 miss + L3 hit:

•L1 miss + L2 miss + L3 miss + Memory:

Testing Memory/Cache Latency

23https://www.techpowerup.com/forums/threads/share-your-aida-64-cache-and-memory-benchmark-here.186338/page-99

Cache Design Questions

•Which data should we cache?

•How do we access the cache?

•Where in the cache should that data go?

•What happens when the cache is full?

•What if we modify data in the cache?

24

Agenda

•Why Is Main Memory Slow?

•Caching and the Memory Hierarchy

•Direct-Mapped Caches
•Where to Place Data
•How to Query the Cache

Cache Blocks

•Caches store “blocks” of data (usually 64 bytes)

•Think about it like a smaller version of main memory

26

Block 0

Block 1

Block 2

Block 3

Block B-1

.
.
.

Cache
B blocks

Main Memory
264 / 64 blocks

Block 0

Block 1

Block 2

Block 3

Block 258 -1

.
.
.

Types of Caches

•Q: Suppose we issue an ld (8B): which block does it go in?

27Today

Direct Mapped: Exactly one place

Fully Associative: Anywhere

Set-Associative: Specific places

Block 0

Block 1

Block 2

Block 3

Block B-1

.
.
.

Cache
B blocks

Cache Organizations: Terminology

•Rows (sets) and columns (ways) of blocks

28

.
.
.

B0
B0
B0
B0

B0

Set 0

Set 1

Set S-1

Direct-Mapped

Way 0

B1
B1

B1

.
.
.

B0
B0

B0

Set 0

Set 1

Set S-1

Set-Associative

Way 0 Way 1

B1B0

Fully-Associative

BK-1
...

Way 0 Way 1 Way K-1

Toward a Direct-Mapped Cache

•Design questions:
•Where to place data?
•How to query the cache?

29

Main
Memory

Register
File

Direct-Mapped Cache

Set 0

Set 1

Set 2

Set 3

Data

Agenda

•Why Is Main Memory Slow?

•Caching and the Memory Hierarchy

•Direct-Mapped Caches
•Where to Place Data
•How to Query the Cache

Main Memory
264-6 blocks

Block 0

Block 1

Block 2

Block 3

Block 258 -1

.
.
.

Mapping Data to a Direct-Mapped Cache

•Need to map every memory location to a specific set

31

…

Set 0
Set 1

Set S-1

Direct-Mapped Cache
‘S’ blocks

f : addr -> set

“hash function”

Set Index Hash Function

•We could use something fancy (lots of research on this!)

•Simplest: just use bits of the address

32

a8a7a6 a5a4a3a2a1a0a63... a10a964-bit address

64 Byte Block8 Sets

…

Set 0
Set 1

Set 7

Set 2
Set 3

Direct-Mapped Cache

Block Data

Set
Index

Byte-In-Block
Index

Visualizing the Cache Mapping

33

Block 0
Block 1
Block 2
Block 3

Set 0
Set 1
Set 2
Set 3

Direct-Mapped Cache
4 blocks

Block 0
Block 1
Block 2
Block 3

Block 258 -1

.
.
.

Block 4
Block 5
Block 6
Block 7

Main Memory
264-6 blocks

But hash
collision!

Resolving Hash Collisions

•Solution: cache both data and address

34

a8a7a6 a5a4a3a2a1a0a63... a10a964-bit address

Byte-in-BlockSet Index“Tag”

…

Set 0
Set 1

Set 7

Set 2
Set 3

Direct-Mapped Cache

Data Tag

Must compare tag bits
on every cache access
to check for collision

Agenda

•Why Is Main Memory Slow?

•Caching and the Memory Hierarchy

•Direct-Mapped Caches
•Where to Place Data
•How to Query the Cache

Querying the Cache

•The cache must track the current state of every block
• INVALID: no data currently cached (tag is meaningless)
• CLEAN: data is cached and unmodified
• DIRTY: data is cached and modified by the CPU (doesn’t match memory)

36

Direct-Mapped Cache

Set 0

Set 1

Set 2

Set 3

Data Tag State

Querying the Cache: Cache Controller

37

Determine
Set Index

CLEAN Check
block state

INVALID

DIRTY

Perform
Read/Write

“Cache Fill”
Copy data into cache

Check
tag

mismatch

match

“Cache Writeback”
Write dirty data to mem

Check
tag

match

mismatch

Querying the Cache: STORE Instruction

38

Main
Memory

Register
File

Direct-Mapped Cache

Set 0

Set 1

Set 2

Set 3

Data Tag State

func:
// a0 = 0x100
// a1 = 0xff
sd a1, 0(a0)

Example: Accessing an Array

39

Main
Memory

Register
File

void sum(uint64_t a[10])
{
 // a = 0x100

uint64_t s = 0;
for(int i = 0; i < 10; i++)

s += a[i];
return s;

}

Direct-Mapped Cache

Set 0

Set 1

Set 2

Set 3

Data Tag State

Example: Accessing an Array

40

Main
Memory

Register
File

void sum(uint64_t a[10])
{
 // a = 0x100

uint64_t s = 0;
for(int i = 0; i < 10; i++)

s += a[i];
return s;

}

Direct-Mapped Cache

Set 0

Set 1

Set 2

Set 3

Data Tag State

a[0] = 1_0000_0000
a[1] = 1_0000_1000
a[2] = 1_0001_0000
a[3] = 1_0001_1000
a[4] = 1_0010_0000
a[5] = 1_0010_1000
a[6] = 1_0011_0000
a[7] = 1_0011_1000
a[8] = 1_0100_0000
a[9] = 1_0100_1000

read(a[0]) = MISS
read(a[1]) = HIT
read(a[2]) = HIT
read(a[3]) = HIT
read(a[4]) = HIT
read(a[5]) = HIT
read(a[6]) = HIT
read(a[7]) = HIT
read(a[8]) = MISS
read(a[9]) = HIT

CS 211: Intro to Computer Architecture
13.2: Memory Access Patterns and Caching

Spring 2025 – Thursday 24 April

Minesh Patel

	Default Section
	Slide 1: CS 211: Intro to Computer Architecture 13.2: Memory Access Patterns and Caching
	Slide 2: Announcements
	Slide 3: Our Mental Model (So Far)
	Slide 4: Agenda
	Slide 5: Semiconductor Memories
	Slide 6: Main Memory vs. Registers
	Slide 7: Main Memory vs. Registers
	Slide 8: Even If I Were a Billionaire….
	Slide 9: Beyond Cost: Access Latency
	Slide 10: Beyond Cost: Density
	Slide 11: Beyond Cost: Energy
	Slide 12: Cost-Performance Tradeoff
	Slide 13: It’s Just Hard to Improve Memory
	Slide 14: Agenda
	Slide 15: Main Memory Kills Performance
	Slide 16: Getting the Best of Both Worlds
	Slide 17: The Right Data to Cache
	Slide 18: Choosing What to Cache
	Slide 19: Benchmarking ilab2
	Slide 20: Example: Matrix Multiply (C = A*B)
	Slide 21: The Memory Hierarchy
	Slide 22: Hit/Miss Performance
	Slide 23: Testing Memory/Cache Latency
	Slide 24: Cache Design Questions
	Slide 25: Agenda
	Slide 26: Cache Blocks
	Slide 27: Types of Caches
	Slide 28: Cache Organizations: Terminology
	Slide 29: Toward a Direct-Mapped Cache
	Slide 30: Agenda
	Slide 31: Mapping Data to a Direct-Mapped Cache
	Slide 32: Set Index Hash Function
	Slide 33: Visualizing the Cache Mapping
	Slide 34: Resolving Hash Collisions
	Slide 35: Agenda
	Slide 36: Querying the Cache
	Slide 37: Querying the Cache: Cache Controller
	Slide 38: Querying the Cache: STORE Instruction
	Slide 39: Example: Accessing an Array
	Slide 40: Example: Accessing an Array
	Slide 41: CS 211: Intro to Computer Architecture 13.2: Memory Access Patterns and Caching

