
CS 211: Intro to Computer Architecture
11.2: Combinational Logic, Flip-Flops, and Clocks

Spring 2025 – Thursday 10 April

Minesh Patel

Announcements

•Ongoing
•Extra Credit: replaces WA6, due Friday (April 11) @ 11:59 pm

•PA4: due Next Friday (April 18) @ 11:59 pm

•Upcoming
•WA8: Tomorrow (?)

2

Logical Operations

and(i) rd, rs1, rs2/imm
or(i) rd, rs1, rs2/imm
xor(i) rd, rs1, rs2/imm

Branch/Jump

beq rs1, rs2, <label>
bne rs1, rs2, <label>
blt(u) rs1, rs2, <label>
bge(u) rs1, rs2, <label>
jal rd, <label>
jalr rd, offset(rs1)

sll(i)(w) rd, rs1, rs2/imm
srl(i)(w) rd, rs1, rs2/imm
sra(i)(w) rd, rs1, rs2/imm

Shift

Memory

l{b/h/w/d} rd, offset(rs)
lu{b/h/w/d} rd, offset(rs)
s{b/h/w/d} rd, offset(rs)

Goal:
Design HW to execute
all RV64I instructions

Add/Subtract

add(i)(w) rd, rs1, rs2/imm
sub(w) rd, rs1, rs2

lui rd, imm
auipc rd, imm

Load/Add Upper Immediate

Compare

slt(u)(i) rd, rs1, rs1/imm

Toward a RV64I CPU

•Recall: We can build anything we want with {AND, OR, NOT}

•Q: what should we build?

3

Let’s start simple

Implementing Logical Operations

4

and(i) rd, rs1, rs2/imm
or(i) rd, rs1, rs2/imm
xor(i) rd, rs1, rs2/imm

Registers to hold data2

• We must build circuits to:

Perform and/or/xor calculations1

and/or/xor
a

b
f(a,b)

Registers
(PC, x0-x32)

wr_data
rd/wr

rd_data
reg_idx

Agenda

•Combinational Logic
•Logical Operations
•Addition/Subtraction
•Comparing Numbers
•Bit Shifting

•Building Registers

Combinational Logic

•Any function where:
• Output depends only on inputs
• No memory of past inputs (i.e., previous states)

6

and/or/xor
a

b
f(a,b)

Combinational

PC
wr_data

rd/wr
rd_data

Not Quite Combinational

Agenda

•Combinational Logic
•Logical Operations
•Addition/Subtraction
•Comparing Numbers
•Bit Shifting

•Building Registers

and(i) rd, rs1, rs2/imm

• It’s just 64 AND gates

8

rd[0]
rs1[0]

rs2[0]/imm[0] AND2

rd[1]
rs1[1]

rs2[1]/imm[1] AND2

rd[63]
rs1[63]

rs2[63]/imm[63] AND2

...

rd
rs1

rs2/imm AND2
64

64

64

64 ANDs in Parallel

1 bit “wires”

64-bit “bus”
(64 independent wires)

Supporting Multiple Logic Operations

9

and(i) rd, rs1, rs2/imm
or(i) rd, rs1, rs2/imm
xor(i) rd, rs1, rs2/imm

rd
rs1

rs2/imm AND2
64

64

64

64
64

64 rd
rs1

rs2/imm

64
64

64 rd
rs1

rs2/imm

Need to choose between these
depending on the instruction

Multiplexer: Choosing A or B

10

000
001
010
011

0
0
0
1

100
101
110
111

1
0
1
1

abs x
x

a

b

sel

MUX2

s=0

s=1

f(a,b,s) = a'bs + ab's' + abs' + abs
 = ...
 = as' + bs

Algebraic Representation

0
1

a
b

s x

Simpler
Truth Table

Multiplexer: Choosing Between N

11

x

a0

sel

MUX4

s=00

s=11

a1
s=01

a3
2

a2
s=10

x

a0

sel

MUX2N
a1

a2^(N-1)

N

00
01

a0
a1

s x

10
11

a2
a3

sel

s=0

s=1

rd
64

MUX3

64

64

64

2

Re: Choosing Between Logic Operations

12

rs1
rs2/imm AND2

64

64

64

64
rs1

rs2/imm

64

64
rs1

rs2/imm

00 AND
01 OR
10 XOR
11 -

sel op

and(i) rd, rs1, rs2/imm
or(i) rd, rs1, rs2/imm
xor(i) rd, rs1, rs2/imm

Key idea: calculate everything, and choose the right output

Arithmetic and Logic Unit (ALU)

13

sel

s=0

s=1

rd
64

rs1

rs2/imm

64

64

2

MUX3

AND2

ALU (Work in Progress)

sel

rd

rs1

rs2/imm

64

64

64

2

ALU

“Logic Block”

and(i) rd, rs1, rs2/imm
or(i) rd, rs1, rs2/imm
xor(i) rd, rs1, rs2/imm

Choosing the Right Operation

•Can figure it out from the machine code

14

sel

rd

rs1

rs2/
imm

64

64

64

2

ALU

00 (and)
01 (or)
10 (xor)
11 (...)

R-Type Encoding (Register-Register)

I-Type Encoding (Register-Immediate)

Agenda

•Combinational Logic
•Logical Operations
•Addition/Subtraction
•Comparing Numbers
•Bit Shifting

•Building Registers

Extending the ALU

16

sel

s=0

s=1

rd
64

rs1

rs2/imm

64

64

2

MUX3

AND2

ALU (Work in Progress)

sel

rd

rs1

rs2/
imm

64

64

64

2

ALU

Logical Operations

and(i) rd, rs1, rs2/imm
or(i) rd, rs1, rs2/imm
xor(i) rd, rs1, rs2/imm

sll(i)(w) rd, rs1, rs2/imm
srl(i)(w) rd, rs1, rs2/imm
sra(i)(w) rd, rs1, rs2/imm

ShiftAdd/Subtract

add(i)(w) rd, rs1, rs2/imm
sub(w) rd, rs1, rs2

Compare

slt(u)(i) rd, rs1, rs1/imm

Adder/Subtractor

Adding 64-bit Numbers

•How do we do binary addition?

17

add(i) rd, rs1, rs2/imm

0110101
1111110

1111111
1111111

11111110

111 1 1 1

Worst case

Adding 64-bit Numbers

18

0110101
1111110

10110011

111 1

Easy case:
no cin/cout

Hard case:
Both cin/cout

No cin

Both cin/cout

•How do we do binary addition?

add(i) rd, rs1, rs2/imm

Binary Addition Algorithm: Carry Ripple

19

a63 … a3a2a1a0
b63 … b3b2b1b0
s63 … s3s2s1s0s64

c1c2c3c63c64 0

bit-by-bit

ai
bi
si

Ci,inCi,out

For Each Bit

FULL
ADDDER

ai
bi

ci,in

ci,out
si

Full Adder Implementation

20

000
001
010
011

0
1
1
0

100
101
110
111

1
0
0
1

abci cos

0
0
0
1
0
1
1
1

co = MAJ(a, b, ci)
s = a ⊕ b ⊕ ci

a
b

AND2

co
b
c

AND2

a
c

AND2

s
a

c
b

FULL
ADDER

ai
bi

ci,in

ci,out
si

Chaining Full Adders

21

a63 … a3a2a1a0
b63 … b3b2b1b0
s63 … s3s2s1s0s64

c1c2c3c63c64 0

a0 b0

s0

+ 0

a1 b1

s1

+

a2 b2

s2

+

a63 b63

s63

+ …s64

64-Bit Adder

“Full Adder”

ai bi

ci,inci,out

si

+

FULL
ADDER

ai
bi

ci,in

ci,out
si

64-Bit Adder

22

a0 b0

s0

+ 0

a1 b1

s1

+

a2 b2

s2

+

a63 b63

s63

+ …s64

s
a

b

64

64

64

1+ co

64-Bit Adder

64-Bit Subtractor

•Exploit two’s complement!

23

A – B = A + B' + 1

a0
b0'

s0

+

a1

s1

+

a2

s2

+

a63

s63

+ …s64

b0

MUX2

1

0

sel
0: add
1: sub

b1'b1b2'b2b63'b63
sel

s
a

b

64

64

64

1+-
co

1

sel
0: add
1: sub

64-Bit Add/Sub

Extra-Fancy Integer Addition Algorithms

24Weste and Harris, “CMOS VLSI Design A Circuits and Systems Perspective,” 4/E.

Our ALU (work in progress)

25

sel

rd

rs1

rs2/
imm

64

64

64

3

ALU

R-Type Encoding (Register-Register) 000 (and)
001 (or)
010 (xor)
011 (add)
100 (sub)
else (-)

I-Type Encoding (Register-Immediate)

Agenda

•Combinational Logic
•Logical Operations
•Addition/Subtraction
•Comparing Numbers
•Bit Shifting

•Building Registers

Comparing Two Numbers

• Just use subtraction! X = rs1 – rs2

•Some gotcha’s with signed/unsigned
• May need to check sign bits, overflow bit (i.e., ALU carry out)
• Some further reading

27

b<cond> rs1, rs2, <label>slt(u)(i) rd, rs1, rs2/imm

slt rd, rs1, rs2

rd =
0 (rs1 < rs2)
1 (rs1 >= rs2)

beq rs1, rs2, <label>

pc +=
offset (rs1 == rs2)
4 (rs1 != rs2)

https://people.cs.pitt.edu/~don/coe1502/current/Unit1/CompBlock/ALU_Comp.html

Faster Options Example: Checking Equality

28

beq rs1, rs2, <label>

pc +=
offset (rs1 == rs2)
4 (rs1 != rs2)

64
64

64
rs1

rs2
AND64 is_eq

00 1
01 0
10 0
11 1

ab f

XNOR

Extending the ALU: Work in Progress

29

Logical Operations

and(i) rd, rs1, rs2/imm
or(i) rd, rs1, rs2/imm
xor(i) rd, rs1, rs2/imm

sll(i)(w) rd, rs1, rs2/imm
srl(i)(w) rd, rs1, rs2/imm
sra(i)(w) rd, rs1, rs2/imm

Shift

Add/Subtract

add(i)(w) rd, rs1, rs2/imm
sub(w) rd, rs1, rs2

Compare

slt(u)(i) rd, rs1, rs1/imm

alu_op

rd
rs1

rs2/imm

64

64

64

3

ALU 1
cout

000 (and)
001 (or)
010 (xor)
011 (add)
100 (sub)
101 (slt)
110 (sltu)
else (-)

alu_op

Next

Agenda

•Combinational Logic
•Logical Operations
•Addition/Subtraction
•Comparing Numbers
•Bit Shifting

•Building Registers

Hardware Bit Shifting

•Efficient shifting is surprisingly difficult
• In theory, any bit can be moved to any destination position
• May need to sign/zero extend

31

sll(i)(w) rd, rs1, rs2/imm // logical shift left
srl(i)(w) rd, rs1, rs2/imm // logical shift right
sra(i)(w) rd, rs1, rs2/imm // arith. shift right

Example: 8-Bit Right Shift (Log(N) Complexity)

32Pillmeier, “Design Alternatives for Barrel Shifters”

arith
vs.

logical

https://www.princeton.edu/~rblee/ELE572Papers/Fall04Readings/Shifter_Schulte.pdf

Our ALU

33

alu_op

rd

rs1

rs2/imm

64

64

64

4

ALU

0000 (and)
0001 (or)
0010 (xor)
0011 (add)
0100 (sub)
0101 (slt)
0110 (sltu)
0111 (sll)
1000 (srl)
1001 (sra)
else (-)

alu_op

Note:
Actual mapping depends on

implementation choices

Control Signal

Agenda

•Combinational Logic
•Logical Operations
•Addition/Subtraction
•Comparing Numbers
•Bit Shifting

•Building Registers

Building Registers to Store Data

•Registers need to support both reading and writing

35

REG
(64-bits)

Data
In

Read OR Write?

Data
Out

64 64 a0

Read
Old a0

Write
New a0 1

R/W

ADD

addi a0, a0, 1

Bit By Bit

36

dout[63]

R/W

1-bit
Reg

din[0] dout[0]

1-bit
Reg

din[1] dout[1]

1-bit
Reg

din[63]

.
.
.

REG
(64-bits)

Data
In

Read OR Write?

Data
Out

64 64

Let’s build a 1-bit register

How Can We Store One Bit?

•Need a bistable element: anything with two stable states

37

Q'

NOT

NOT

Q

Cross-coupled Inverters

QNOT

Q'NOT

(Equivalent)

Cross-Coupled Inverters

•Any starting state will resolve to either Q={0,1}

38

Bistable System

QNOT

Q'NOT

0

1
0

1 QNOT

Q'NOT

1

0
1

0

Q = 0 Q = 1

Set-Reset Latch

•Unfortunately, the user has no inputs to change the inverter state!

39

Q

Q'

R

S

Set-Reset Latch
(has input controls)

We can control
Q via R and S

QNOT

Q'NOT

CC Inverters
(lacks input controls)

Analyzing SR Latches

40

Q

Q'

R

S

SR = 00
0

0

Q

Q'

R

S

0

0

Q

Q'

R

S

SR = 01
0

1

Q

q'

R

S

SR = 10
1

0

Q

Q'

R

S

SR = 11
1

1

00 Qprev
01 0
10 1
11 0

SR Q
Truth Table

R

S

Q

Q'

Analyzing SR Latches

41

Q

Q'

R

S

SR = 00

0
0

0

Q

Q'

R

S

1
0

0

Q

Q'

R

S

SR = 01

1
0

0
1

0

1

Q

q'

R

S

SR = 10

0
1

1
0

1

0

Q

Q'

R

S

SR = 11

0
1

0
1

0

0

00 Qprev
01 0
10 1
11 0

SR Q
Truth Table

R

S

Q

Q'

1

1

0

0

0

1

Abstracting the SR Latch

•We need a better abstraction
• Distinguish between read/write mode
• Get rid of the useless SR=11 case

42

Q

Q'

S

R

00 Qprev
01 0
10 1
11 -

SR Q
SR Latch

“read mode”

“write mode”

D Latch: An Abstracted SR Latch

•Can control when we update q based on a write enable signal

43

R

S

Q

Q'

WR_EN
AND2

D
AND2

Q

Q'

NOT

X
d

0 Qprev
d

D Q

D Latch

WR_EN

1

S R

0 0
d d' “transparent”

“opaque”

D

EN
Q

Q'

D Latch
Symbols

D
EN

Q

Using a D Latch

•Need to carefully control the WR_EN timing

•Simpler solution: use a clock signal
44

addi a0, a0, 1

X
d

0 Qprev
d

D Q

D Latch

WR_EN

1
get the old a0
write the new a0

a0D
EN

Q

???

Old a0New a0
1

Clocked Latches

•Clock Signal: alternate 0/1 forever (very easy to build a circuit for this)

45

•With D Latches:
• Do calculations when clock is 0 (latch is opaque)
• Update registers when clock is 1 (latch is transparent)

a0D
EN

Q

CLK

Old a0New a0
1

CLOCK

One Clock Cycle

•Pros: abstracts the rd/wr timing

•Problem: half of all time is wasted!

Final Version: Edge-Triggered D Flip-Flop

•Key idea: Update Q only on a clock transition (0 -> 1)

46

L1
D

EN

Q
L2

D

EN

QData In Data Out

CLOCK
D Flip Flop

• Only updates on the clock’s rising edge
• Rest of the time can be spent computing

CLOCK

Final Version: Edge-Triggered D Flip-Flop

•Key idea: Update Q only on a clock transition (0 -> 1)

47

L1
D

EN

Q
L2

D

EN

QData In Data Out

CLOCK

Data In

Data Out

CLOCK

D Flip Flop

Only the value near
a clock edge matters

Edge-Triggered D Flip-Flop

48

1-Bit
Reg

D Q

CLK

64-Bit
Reg

D[63:0] Q[63:0]

CLK

6464

CPU clock speed determines how
much work we can do per clock cycle

Sampled on every
clock rising edge

Example: Intel i9

49https://www.intel.com/content/www/us/en/products/sku/230496/intel-core-i913900k-processor-36m-cache-up-to-5-80-ghz/specifications.html

CS 211: Intro to Computer Architecture
11.2: Combinational Logic, Flip-Flops, and Clocks

Spring 2025 – Thursday 10 April

Minesh Patel

	Default Section
	Slide 1: CS 211: Intro to Computer Architecture 11.2: Combinational Logic, Flip-Flops, and Clocks
	Slide 2: Announcements
	Slide 3: Toward a RV64I CPU
	Slide 4: Implementing Logical Operations
	Slide 5: Agenda
	Slide 6: Combinational Logic
	Slide 7: Agenda
	Slide 8: and(i) rd, rs1, rs2/imm
	Slide 9: Supporting Multiple Logic Operations
	Slide 10: Multiplexer: Choosing A or B
	Slide 11: Multiplexer: Choosing Between N
	Slide 12: Re: Choosing Between Logic Operations
	Slide 13: Arithmetic and Logic Unit (ALU)
	Slide 14: Choosing the Right Operation
	Slide 15: Agenda
	Slide 16: Extending the ALU
	Slide 17: Adding 64-bit Numbers
	Slide 18: Adding 64-bit Numbers
	Slide 19: Binary Addition Algorithm: Carry Ripple
	Slide 20: Full Adder Implementation
	Slide 21: Chaining Full Adders
	Slide 22: 64-Bit Adder
	Slide 23: 64-Bit Subtractor
	Slide 24: Extra-Fancy Integer Addition Algorithms
	Slide 25: Our ALU (work in progress)
	Slide 26: Agenda
	Slide 27: Comparing Two Numbers
	Slide 28: Faster Options Example: Checking Equality
	Slide 29: Extending the ALU: Work in Progress
	Slide 30: Agenda
	Slide 31: Hardware Bit Shifting
	Slide 32: Example: 8-Bit Right Shift (Log(N) Complexity)
	Slide 33: Our ALU
	Slide 34: Agenda
	Slide 35: Building Registers to Store Data
	Slide 36: Bit By Bit
	Slide 37: How Can We Store One Bit?
	Slide 38: Cross-Coupled Inverters
	Slide 39: Set-Reset Latch
	Slide 40: Analyzing SR Latches
	Slide 41: Analyzing SR Latches
	Slide 42: Abstracting the SR Latch
	Slide 43: D Latch: An Abstracted SR Latch
	Slide 44: Using a D Latch
	Slide 45: Clocked Latches
	Slide 46: Final Version: Edge-Triggered D Flip-Flop
	Slide 47: Final Version: Edge-Triggered D Flip-Flop
	Slide 48: Edge-Triggered D Flip-Flop
	Slide 49: Example: Intel i9
	Slide 50: CS 211: Intro to Computer Architecture 11.2: Combinational Logic, Flip-Flops, and Clocks

