CS 211: Intro to Computer Architecture
11.1: Digital Logic and Boolean Algebra

Minesh Patel
Spring 2025 — Tuesday 8 April

Announcements

*Ongoing
* Extra Credit: replaces WA®G, due Friday (April 11) @ 11:59 pm
* WA7: due Wednesday (April 9) @ 11:59 pm
* PA4: due Next Friday (April 18) @ 11:59 pm

*Upcoming
« WAS: TBA after WA7
* PAg: TBA after PA4

Note on PA6

*PA6 is too ambitious
*Tentative plan: reweight PA1-PA5 to cover a missing PA6

¢ Programming Assignments (53%): We will have 6 programming assignments weighted as
follows.

5% e—3%+PA1: Intro to Linux
12% sF+e%] PA2: C Development + Integers

127% =++6%] PA3: Pointers, Arrays, Strings, Structs and Explicit Memory Management

12% «f+69%] PA4: Assembly Programming
127 «++6%] PA5: Single-cycle CPU Emulation

0% PAGE orrvrithhd |

We will announce our final decision when we make it

Layers of Abstraction for CS 211

Real-world Demands Lioh-Level L p o L e e
Problem igh-Level Language Program g B e i)
Algorithm g o 3013, 90
addi a5, a5, -8
Program Assembly Language Program T

. bne a@, a5, loop
S 415: Comp’!ers .
| |\

0000_0000_0000_0111 1011 0111 0000_0011

. 1 . 0000_0000_1000_0111_ 1011 0110_1000_ 0011
A s S avare— Machine Language Program shaimaiiss s
HW/SW Interface (ISA, ABI)

1111_1110 1111 0101 0001:0110 1110 0011
Microarchitecture
Logic gates

Circuits Simple RISC-V Processor
Technology

Physics Logic Circuits
Real-world Constraints

The RISC-V Instruction Set
Manual Volume |

Instruction Set Architecture (ISA)

Unprivileged Architecture

Bit equal

Layers of Abstraction for CS 211

Next ~2-3 weeks:
How a CPU executes machine language code

Microarchitecture

Logic gates

Simple RISC-V Processor

Logic Circuits =

Recap: Computer Organization

Input/Output

(network, USB, etc.)

Storage

(big, slow, cheap memory)

Processor

(where code runs)

Main Memory

(small, fast, expensive) G

nandgame.com

NETple[oETN\ I Solve Level Levels
Nand b 4
Level Help 3Check solution Clear canvas Clear all levels Skip level

Nand Toolbox

Welcome to The Nand Game!

You are going to build a computer starting from basic

Your task is to connect inputs to output relay (default on)

. components,
through wires and relays such that

when both a and b inputs are 1, the The game consists of a series of levels. In each level, you

Step 1: Drag X
components from the
toolbox to the blue area.

output is 0. are tasked with building a component that behaves

. according to a specification. This component can then
1 represents electrical current, 0

be used as a building block in the next level.
represents no current.

, . . The game does not require any previous knowledge
The V input carries constant current, i.e.

about computer architecture or software, and does not
always 1.

require math skills beyond addition and subtraction. (It
The exact specification: does require some patience—some of the tasks might

take a while to solve!)

Input | Output Your first task is to build a nand component.

b
N On the left of the diagram is the exact specification of
0 0 1 the task. Click "Level Help” for further information which
0 1 1 might be helpful.
T 0 1
1T 01 0

https://nandgame.com/ 7

https://nandgame.com/

Minecraft Redstone
Fand®m Q_ Search + STARTAWIKI

59 Minecraft Wiki & Zﬁ%’s’

c::{:al M EXPLORE v GAMES v MINECRAFT + MINECRAFT DUNGEONS ~ WIKI COMMUNITY +

CURRENT
in: Redstone, Tutorials, Redstone circuits English ~

@ Recent Images

Redstone circuits/Logic Tk |) view source

< Redstone circuits

This article is about a specific category of redstone circuits. For other circuits, see redstone circuit.

A logic gate can be thought of as a simple device that will return a number of outputs, determined by the pattern of

inputs and rules that the logic gate follows. For example, if both inputs in an AND gate are in the - '
Spawn Egg Spawn Egg

‘true’/'on'/'powered’/'1" state, then the gate will return ‘true’/'on'/'powered’/'1. 15 hours ago 15 hours ago

There are many different kinds of logic gates, each of which can be implemented with many different designs. Each
design has various advantages and disadvantages, such as size, complexity, speed, maintenance overhead, or

cost. The various sections will give many different designs for each gate type.

Z Contents [hide]

1. Concepts
2. Logic gate
2. NOT gate

Check out Fandom Quizzes and challenge your friends! §39

2 2 OR aate

Redstone circuits/Logic - Minecraft Wiki

https://minecraft.fandom.com/wiki/Redstone_circuits/Logic

Nand to Tetris

DO0I:10.1145/3626513

CS course walks students through a step-
by-step construction of a complete, general-
purpose computer system—hardware and
software—in one semester.

BY SHIMON SCHOCKEN

Nand to Tetris:
Building

a Modern
Computer
System from
First Principles

SUPPOSE YOU WERE asked to design an abridged
computer science (CS) program consisting of just
three courses. How would you go about it? The

Several reasonable options come
to mind. One is a hands-on over-
view of applied CS, building on the
programming skills and theoretical
knowledge acquired in the first two
courses. Such a course could survey
key topics in computer architecture,
compilation, operating systems, and
software engineering, presented in
one cohesive framework. Ideally, the
course would engage students in sig-
nificant programming assignments,
have them implement classical algo-
rithms and widely used data struc-
tures, and expose them to a range of
optimization and complexity issues.
This hands-on synthesis could ben-
efit students who seek an overarch-
ing understanding of computing
systems, as well as selflearners and
non-majors who cannot commit to
more than a few core CS courses.

This article describes such a
course, called Nand to Tetris, which
walks students through a step-by-
step construction of a complete,
general-purpose computer system—
hardware and software—in one se-
mester. As it turns out, construction
of the computer system built during
the course requires exposure to, and
application of, some of the most per-

key insights

B In the early days of computers, any
curious person could gain a gestalt

under of how the hi
works. As digital technologies became
incr ingly more Llex, this clarity

is all but lost: The most fundamental

ideas and techniques in applied
p are now hidden under

many layers of obscure interfaces and

proprietary implementations.

B Starting from NAND gates only, students
build a hardware platform comprising
a CPU, RAM, datapath, and a software

hierarchv istina of an

'620T ‘g [udy uo Ays1aatupn) s1e3iny Aq Areiqi] [endiq WOV Y} Wolj papeojumo(]

https://dl.acm.org/doi/pdf/10.1145/3626513

The official website of Nand to Tetris courses

And of the book The Elements of Computing Systems, By Noam Nisan and Shimon Schocken (MIT Press)

This website contains all the lectures, project materials and tools necessary for building a general-purpose
computer system and a modern software hierarchy from the ground up.

The materials are aimed at students, instructors, and self-learners. Everything is free and open-source, as long
as you operate in a non-profit setting. Here is a recent CACM article about the course: text / video.

https://www.nand2tetris.org/

https://dl.acm.org/doi/pdf/10.1145/3626513
https://www.nand2tetris.org/

Agenda

The Digital Logic Abstraction

*Boolean Algebra

*Truth Tables
*Equations and Identities

Digital Logic Gates

Digital Logic

*Digital logic is a convenient abstraction for how circuits work
* 1-bit input/output signals (high/low = 1/0)

Example Logic Circuit: “Buffer”

Algebraic Graphical Input/Output Signal
Representation Representation Representation
1
a L .
fa)=a o > f@ 1
f(a) L o

Digital Logic Abstraction

* Digital logic abstracts away the hardware
 Can work with mathematical equations (instead of resistors, capacitors, etc.)
 Unfortunately, hard to say whether you can actually build a given circuit

Example Logic Circuit: “Inverter”

Algebraic Graphical Input/Output Signal
Representations Representation Representation

f(a) = ~a 1

- ! d a ‘ 0

s o f@

a 1
. f(a) o |
>
time

Abstraction vs. Reality

*Voltage cannot change instantaneously

Abstraction Reality

a—— o f@

T E ST, T MM

T ST OO I n— R

- 1,=0.169 ng

Z I

Volt (V)
BRLE RN e
HI L i : :
¥y
Ls
]

. 5 10 15 20 25 30 35 40 45
> Time (ns)

t ime Sandoval-Ibarra, F., and E. S. Herndandez-Bernal. "Ring CMOS NOT-based oscillators:
Analysis and design."” Journal of applied research and technology, 2008.
13

Example: Electrical Wires

* Real circuit behavior is highly non-ideal
* Circuit design (e.g., density, error-mitigation mechanism)
» Manufacturing defects (e.g., thinner/thicker wires)
 Environment (e.g., temperature, altitude)

* Operating conditions (e.g., voltage, frequency) DDRS Read/Write Interface

Two Adjacent Wires 1=

- BN ENH - ENR 1114
. 4

2 1.04 Frequency-
) 0.9 dependent loss

o U
£ .
S 0.8 ;

I
|
|
I
|
I+ Switching lines + | SEPUSPISAS SIS fose oo
: I 0.7+
|
I
I
|

Frequency-
i de pendent loss

/Rcﬂcclions

—1
:.Quietdatalinel Al 06 T T T T T T T T
| AROOANNDDD DD NN NN
l DO NSO O NSO NAEAOD
I
il Time (nsec)
Eric Bogatin, “Signal and Power Integrity 2/E,” 2010. Tim Wang Len, “DDRs Signal Integrity Fundamentals,” 2021.

14

https://www.signalintegrityjournal.com/blogs/12-fundamentals/post/1998-ddr5-signal-integrity-fundamentals

Example: Real Inverter Circuits

* Performance heavily depends on voltage and temperature

1A o 14 1 vee
2 13

1Y 3 w< 1T 6A
3 12

2A 1T >o— T 1 6Y
4 11

2Y 1 T 1 5A
5 10

3A 1 >o— T 5Y

3y 48 —o< 91 4A
7 8

GND T T 4Y

Functional pinout

Operating free-air temperature (T,)

PARAMETER FROM TO Vee 25°C -40°C to 85°C UNIT
MIN TYP MAX MIN TYP MAX
2V 45 95
tod Propagation delay A Y 45V ns
6V

Texas Instruments 74HCo4 IC Datasheet 15

https://www.ti.com/lit/ds/symlink/sn74hc04.pdf

Circuit Design is a Game of Tradeoffs

* Cost: typically proportional to the physical circuit size (area)

* Performance: depends on size, complexity, etc.

*Power / Energy: worse with larger circuits, higher voltage/frequency
* Design effort: circuit designers are expensive in time and money

No single approach: depends on goals and requirements

16

Digital Logic Abstractions for CS 211

Graphical Circuit

a —%f(a)

-

Bs
Bs

f(a,b,c)

Algebraic Equation

f(a) = a

f(a,b,c) = a'b"' + bc

17

Agenda

*The Digital Logic Abstraction

‘Boolean Algebra

*Truth Tables
*Equations and Identities

Digital Logic Gates

Boolean Algebra

* Mathematical framework for binary values
a, b € {06, 1}

* Formalized by George Boole in the mid-1800s

4. Z0ép

71w

/\
THE MATHEMATICAL ANALYSIS l?‘ =

OF LOGIC,

BEING AN ESSAY TOWARDS A CALCULUS

OF DEDUCTIVE REASONING‘.,/‘ﬁﬁw.f,\

BY GEORGE BOOLE. . /1'% ./
o GRS

Exiowwroios & wdeas ai imeripa d\i\aw sard 7d xowd. Kows &
Niyw, ofs xpavrar és ix Tobrar dwoluwivree @AN' of wipl dv duxviovewy,
osde & duiawiover.

Awstorsy, Anal, Post., lib. 1. cap. x1.

CAMBRIDGE:
MACMILLAN, BARCLAY, & MACMILLAN;
LONDON: GEORGE BELL.

1847

Boolean Functions

*We can define functions and equations over Boolean variables

Example Function

5 . {1 a=2o0
_> (8) = 0 a =1
b—
c—> -F —f(a,b,..)
: a f(a)
%, 1
1 %,

20

Example: Binary Addition

* Adding two unsigned one-bit numbers

d
f(a,b) = a + b + b
f(a,b)

0 0 1 1

+_ 0 +_ 1 + 0 +_1

00 O\ nL 10

21

Truth Table Representation

* Fully defines the function (all possible inputs)

“Truth Table”
inputs outputs
ab f(a,b)
© 06 00
O 1 01l
1 6 01
1 1 10

22

Truth Tables: Examples

a_
a f(a) Z f(a,b) 2:AND3 f(a,b,c)

a f(a) ab f(a,b) abc f(a,b,c)
. . 000 0
O 1 515 %, 001 0
1 © 01 1 gi? g
10 1 100 0
11 1 101 0
110 0
111 1

23

Truth Tables (Generalized)

—f(a,b,..)

inputs

abc

000
001
010
011

100
101
110
111

outputs

f(a,b,c)

(0,0,0)
-F(@)@Jl)
£(0,1,0)
£(0,1,1)
£(1,0,0)
£(1,0,1)
£(1,1,0)
£(1,1,1)

24

Agenda

*The Digital Logic Abstraction

*Boolean Algebra

Truth Tables
*Equations and Identities

Digital Logic Gates

Boolean Algebra Representations

af<a>

a f(a)
0 1
1 0

f(a)

la // C-style notation

a' // Boolean algebra notation

X

“a prime”

26

Functional Completeness

*We can express any Boolean function in terms of {NOT, AND, OR}

af(a) Z:ANDZ f(a,b) Z f(a,b)

a f ab T ab f
0 1 PO O PO O
1 © 1 O 01 1
10 © 10 1
11 1 11 1

f(a) = a' -ro f(a,b)

a *b f(a,b) = a + b

ab=alb o\ 27

Example: Buffer and Inverter

a— s> f(a)

a f(a)

<

f(a)

0

0

G

L

a f(a)

[0 1)«<o0=0

1 @/
f(a) = a

28

Example: NAND2

f(a,b) =(ab=00) Nl(ab=-oD(ak==1
9 INaND20— f(a, b) v J’ \/-1%){’ \/f
b_ J

_a'ht b g v g
ab T

00 1
01 1
10 1

11 ©

29

Example: NAND2

Z:NANDZ f(a,b) f(a,b,c) - a3' + b’
= (ab)’
ab T
00 1 Z:: NAND2(a, b)
01 1
190 1 Z_ NAND2(a, b)
11 ©

30

Example: Majority Function

d —>
b—{ x = MAJ(a, b, ¢c) — X
C ——>
abc x , oy
! C +abl
000 0 f(a,b,c) = abef O‘Bj*fi%_,g)
L+ be,
010 ﬁ/ ¢ (6'b s ab) 3 alhe+?d
011 1)
100 ©

|
111 1

31

Example: Majority Function

abc

000
001
010
011

100
101
110
111

x = MAJ(a, b, c) X

P RPPRPORPOOO] X

f(a,b,c) = ab + bc + ac

9 AnD2

b

b_

C_ MAJ(a, b, c)
9 AND2
c__|AND

32

Truth Table to Algebraic Equation

Truth Table Algebraic Representation
ab f(a,b) f(a,b) =
00 f(00) ———————p 3'b"' * f(00) +
91 f(01) ——————) q'b * f(01) +
10 f(10) ———— gb' * £(10) +
11 f(11) =———p oh * £(11)

NOT flo= 01+ oo

a f J,'

0 1 C(="

1 ©

33

Truth Table to Algebraic Equation

Truth Table
ab f(a,b)

00 f(00) = a'b
01 f(0]) =——————m— '
10 f(10) —————————ep b’
11 f(11) = 3p

Algebraic Representation

NOT
a f
O 1
1 0

f(a:b) =
' * f(00) +

* f(01) +

* £(10) +

* £(11)

f(a) = a' * £(0) + a * (1)

=a *1 + a * o
= '

34

Example: AND

p_|AN02 }— f(a,b)
£ = 1 iff ab == 11
ab f {@ otherwise
0O O
01 O

Algebraic Representation

19 © Ignore f(a,b) = a * b * f(1,1)

=0 cases b
35

Example: XOR

@ Jora)— f(a,b) (1 iff ab ==

-F=.< OR ab ==
ab T 0

00 O

otherwise

-

Algebraic Representation

11 © f(a,b) = a'b + ab/

N

Standard Logic Blocks

Exclusive Exclusive
= NOR or
Name AND OR Inverter Buffer NAND NOR OR (XOR) olalands
F F E F F F
Graphic
Symbol
X Y X Y X X X y X ¥
Algebraic = =X+ =x" = F=(Xx F=(x+y) '|F=(x&® F=(x®y)"'
\gebraic | F=yy | F=x+y | F=x F=x (xy) (x+y) '|F=(x@y) | F=(xDy)
% ¥ |oF x y|F F X 'y |.F x y|F X: ¥ | F x y|F
O 0]0 0 0]0 0]1 @ '@ |:A 0 9|2 0 0|0 0 0|1
g le tla|o 1|4 1|0 (4 gl'e 2]lalo 2|0 | o 4|t |6 %|0
1 0|0 i 0|3 i 0|41 1 010 i O] 1 1 0|0
1 1|1 i 41 11 1]0 1 11|10 1 110 R] ¢

https://www.geeksforgeeks.org/logic-gates/

Basic Identities of Boolean Algebra

* Used to simplify complex equations

a'' = 3 involution
a1l = a <= a + 0 = 23 identity
O =0 |«— a+1=1| nul
= 9 |« a + a = 4 idempotent
a-a' = 0 4—»3 + a' = ﬂ complementarity
ab = ba «—/a + b =b + 3
(ab)c = a(bc) «—= (a + b) + c = 2a + (b + ¢)
a(b + ¢) =ab + ac «—= a + bc = (a + b)(a + ¢)
ab + a = ajl«—|{(a + b)a = a absorption

(a + b)' =a'b’

DeMorgan’s law

commutativity
associativity

distributivity

Exercise: Simplify the Expressions

__>

+ ab

p'bc + a'hc'

lb(%i: 6

ab%ab

b(//f

A) \
(a" + b")(a'" + b)

ra'biba +pE
K((z+'®%>+b/a/ 1
RN aN)

R
o i
|

39

Exercise: Simplify the Expressions

((a +d)'(b" + c)")’ abc + a'c + bc' gb/abm’
R B 1 T —) °HO |
¥ 7 { C(a‘ro*‘&)%loo of | |
|) l) o[O

(o) = (O c(b+o') ”JO el

J deMoraqans C\O%C&Z v o - 514—0.
/) O\ |
X+ W (c+d)+ o of L
|

Sal
o

40

Example: OR

o Jor2)— f(a,b) .

ab

91,
01

~

|
A

-

1

O

if+f ab == 01
OR ab == 10
OR ab == 11

otherwilse

Algebraic Representation

10 f(a,b)

11
Boolean algebra

(simplification using identities)

R R Ro|h

a'b+ ab' + ab
a'b + a(b'" + b)
a'b + a

a+ b

41

Example: Majority Function

d —>

b—s{x = MAJ(a, b, c) [x

C —>
abc x
o0 O Algebraic Representation
001 © f(a,b,c) = a'bc + ab'c + abc' + abc
10 © ~
011 1 -
100 0 /=ac+ab+ac

1

Simplification
left as an exercise ©

!

101
110
111

Aside: Functional Completeness

*{NAND} and {NOR} are functionally complete singleton sets

Z:NANDZ f(a,b) g f(a,b)

[ab f ab £
T35 00 1 00 1
L 1 1 1 O
L 10 1 10 ©

11 © 11 ©

43

Agenda

*The Digital Logic Abstraction

*Boolean Algebra

*Truth Tables
*Equations and Identities

Digital Logic Gates

Representations of Boolean Logic

* Any two-state system can represent Boolean values

Truth Table Boolean Equation
d f f (3)

ISBN 978-0-13-409266-9 E E

AV

https://www.smithsonianmag.com/arts-
culture/how-the-telegraph-went-from-semaphore-
to-communication-game-changer-1403433/

FIRE @ ALARM

PULL DOWN .
]
i

Switch Lever State | Color Line width Pixel color Sound Length
up/down up/down clipped/unclipped red/black narrow/wide Black/white Long/short tap

45

Building a Logic Gate: Mechanical Switches

* Mechanical switches controlled manually

Truth Table
switch 1light

0 1
1 0

AND circuit

Boolean Equation

light(sw) = sw'

OR circuit

ey

SWITCH A SWITCH B

:

AM3LLIvE

SWITCH A

L &5

SWITCH B

Prof. Gavva, CS 211 Lecture 8, Fall 2024

Building a Logic Gate: Electromechanical Switches

* Mechanical switches controlled by electricity

Shading coil Armature

(AC only) NC contact
Spring

‘ﬂ§

\ Anr NO tact
,_'=:_,’* conta
% — Electromagnet
% (Coil)
(f—__::—:—_ =

https://www.electricalandcontrol.com/electromechanical-relays-emr/

Truth Table
electromagnet contact
off NC
on NO

47

Building a Logic Gate: Electrical Switches

* Fully electronic switch (transistor): no mechanical/moving parts

NOR3 Gate from the
Apollo Guidance Computer (1960s) abc NOR3 (d, b » C)

000
001
010
011

100
101
110
111

O OO

https://commons.wikimedia.org/wiki/File:Agc_nor2.jpg

Example: “Standard Cell” Library for Chip Design

intd. INTRODUCTION TO CELL-BASED DESIGN
INVTD — 3-STATE INVERTER
|nte| INTRODUCTION TO CELL-BASED DESIGN
Logic Table
" o1 Inputs Outputs .
1nTD o1 OHB — B INFUT DH GATE
. ™ : ' 0 1 1
11 0 Logic Table
X 0 z
. Inputs Outputs
INVTD Description 11—
12— M 12 13 14 15 16 17 I8 o1
Function: 3-State Inverter with Active High Output Enable, Normal Drive
13— o o0 0 0 0 0O 0 O 0
4 1 1 X X X X X X X 1
. - 15 | o1 X 1 X X X ¥ X X 1
IIM INTRODUCTION TO CELL-BASED DESIGN . X X 1 X X X X X 1
15— X X X 1 X X X X 1
AOI22 — AND-OR INVERT GATE 7 ¥ ¥ X %X X 1 x &%)
8= X X X X X X 1 X 1
X X X X X X X 1 1
11—t Logic Table
112 —— Inputs Outputs
21— " "1 12 121 122 o1 OR8 Description
23— 1 1 x x [i] . .
! XX 11 0 Function: % Input OR, Normal Drive
Any other combination 1
AOQI22 Description
Function: 2 AND2 into NOR2, Normal Drive

Intel, “Introduction to Intel Cell-Based Design,” 1988.

CS 211: Intro to Computer Architecture
11.1: Digital Logic and Boolean Algebra

Minesh Patel
Spring 2025 — Tuesday 8 April

	Default Section
	Slide 1: CS 211: Intro to Computer Architecture 11.1: Digital Logic and Boolean Algebra
	Slide 2: Announcements
	Slide 3: Note on PA6
	Slide 4: Layers of Abstraction for CS 211
	Slide 5: Layers of Abstraction for CS 211
	Slide 6: Recap: Computer Organization
	Slide 7: nandgame.com
	Slide 8: Minecraft Redstone
	Slide 9: Nand to Tetris
	Slide 10: Agenda
	Slide 11: Digital Logic
	Slide 12: Digital Logic Abstraction
	Slide 13: Abstraction vs. Reality
	Slide 14: Example: Electrical Wires
	Slide 15: Example: Real Inverter Circuits
	Slide 16: Circuit Design is a Game of Tradeoffs
	Slide 17: Digital Logic Abstractions for CS 211
	Slide 18: Agenda
	Slide 19: Boolean Algebra
	Slide 20: Boolean Functions
	Slide 21: Example: Binary Addition
	Slide 22: Truth Table Representation
	Slide 23: Truth Tables: Examples
	Slide 24: Truth Tables (Generalized)
	Slide 25: Agenda
	Slide 26: Boolean Algebra Representations
	Slide 27: Functional Completeness
	Slide 28: Example: Buffer and Inverter
	Slide 29: Example: NAND2
	Slide 30: Example: NAND2
	Slide 31: Example: Majority Function
	Slide 32: Example: Majority Function
	Slide 33: Truth Table to Algebraic Equation
	Slide 34: Truth Table to Algebraic Equation
	Slide 35: Example: AND
	Slide 36: Example: XOR
	Slide 37: Standard Logic Blocks
	Slide 38: Basic Identities of Boolean Algebra
	Slide 39: Exercise: Simplify the Expressions
	Slide 40: Exercise: Simplify the Expressions
	Slide 41: Example: OR
	Slide 42: Example: Majority Function
	Slide 43: Aside: Functional Completeness
	Slide 44: Agenda
	Slide 45: Representations of Boolean Logic
	Slide 46: Building a Logic Gate: Mechanical Switches
	Slide 47: Building a Logic Gate: Electromechanical Switches
	Slide 48: Building a Logic Gate: Electrical Switches
	Slide 49: Example: “Standard Cell” Library for Chip Design
	Slide 50: CS 211: Intro to Computer Architecture 11.1: Digital Logic and Boolean Algebra

