CS 211: Intro to Computer Architecture 1.1: Introduction and Syllabus

Minesh Patel Spring 2025 – Tuesday 21 January

Sanity check

• Make sure you're here for:

- 01:198:211 COMPUTER ARCHITECTURE
- •Sections {05, 06, 07, 08}

•	01:198:211	COMP	UTER ARCHITECTU	RE 4 credits				Sections: 0 / 11	Prereqs	Synopsis		
SEC	INDEX	MEE	TING TIMES / LOCA	TIONS			EXAM	INSTRUCTORS			BOOKS	REGISTER
05 CLOSED	10601	Tuesday Thursday Thursday	3:50 PM - 5:10 PM 3:50 PM - 5:10 PM 7:45 PM - 8:40 PM	Busch Busch Busch	HLL-114 HLL-114 ARC-105	С	PATEL, MINESH		<u>Books</u>	<u>Register</u>		
Section 06	Comments: Go	to http://canv	as.rutgers.edu									
06 Closed	10602	Tuesday Thursday Tuesday	3:50 PM - 5:10 PM 3:50 PM - 5:10 PM 7:45 PM - 8:40 PM	Busch Busch Busch	HLL-114 HLL-114 ARC-105	С	PATEL, MINESH		<u>Books</u>	<u>Register</u>		
Section 07	Comments: Go	to http://canv	as.rutgers.edu									
07 CLOSED	10603	Tuesday Thursday Thursday	3:50 PM - 5:10 PM 3:50 PM - 5:10 PM 5:55 PM - 6:50 PM	Busch Busch Busch	HLL-114 HLL-114 SEC-202	с	PATEL, MINESH		<u>Books</u>	<u>Register</u>		
Section 08	Comments: Go	to http://canv	as.rutgers.edu									
08 CLOSED	10604	Tuesday Thursday Tuesday	3:50 PM - 5:10 PM 3:50 PM - 5:10 PM 5:55 PM - 6:50 PM	Busch Busch Busch	HLL-114 HLL-114 SEC-203	с	PATEL, MINESH		<u>Books</u>	<u>Register</u>		

CS 211 in the Core Curriculum

- Congrats on making it this far 🕲
- 211 is the **only required systems course** for a CS degree
 - Programming, algorithms and data structures (CS 111, CS 112, CS 344)
 - Discrete Math (CS 205, CS 206)
 - Systems (CS 211)
- You'll get a basic idea of how computers run code
- I hope you will be inspired to take more systems courses
 - CS 214: Systems Programming
 - CS 411: Computer Architecture
 - CS 415: Compilers
 - **CS 416:** Operating Systems Design

- CS 417: Distributed Systems
- CS 419: Computer Security
- ... and more

•Part 1: CS 211 in a nutshell

•Part 2: Boring (but important) logistics

CS 211: Intro to Computer Architecture

CS 211: Intro to Computer Architecture

Computer:

"a device that uses **physical phenomena** to model a **problem being solved**"

Examples: Phone (2022) + Laptop (2023)

general-purpose

• Both use electrons to perform general-purpose computations

https://www.amazon.com/Google-Pixel-Unlocked-Smartphone-Ultrawide/dp/BogHJZPFDD

specialized

Examples: Typical Server or PC

Example: PS5 Pro (2024)

• Uses electrons to perform graphics-focused computations

general-purpose

specialized

Example: Warehouse-Scale Computer (Google, NL)

Raganathan+, "Twenty Five Years of Warehouse-Scale Computing," IEEE Micro, 2024.

Example: Azure's Al Accelerator (Maia 100, 2023)

general-purposespecialized• Both use electrons to perform highly-efficient Al computations

https://www.tweaktown.com/news/100264/microsoft-lifts-the-lid-on-its-new-ai-chip-maia-100-up-to-700w-tdp-built-for-large-scale/index.html

Examples: Tesla FSD (2019)

Example: Mechanical Computers

Abacus (~2700 BC)

Example: Analog Computers

specialized general-purpose • Uses fluid pressure to model diffeq's • Uses gears to predict eclipses The Water Integrator (1936)

Reproduction (2007) of Antikythera (~2000 BC)

https://en.wikipedia.org/wiki/Antikythera_mechanism#/media/File:A ntikythera_model_front_panel_Mogi_Vicentini_2007.JPG

https://habr.com/ru/articles/228283/

Computers, More Generally

Problem Being Studied

Arithmetic Operations

Economic Simulation

Abacus (~2700 BC) Mechanics

Differential Equations

AKAT-1 (1959)

Analog Electronics

General Purpose Computation

Server Blade (2020)
Digital Electronics

https://images.computerhistory.org/revonlin e/images/xb93.80p-03-01.jpg?w=600

Physical Phenomena

https://www.britannica.com/technology/analog -computer#/media/1/22416/127313

Choose based on problem requirements and computer tradeoffs

Computers, More Generally

- Every computer provides different tradeoffs
 - Cost

- Battery life • Heat
- Performance
- Reliability
- Security

- Inputs/outputs
- Weight
- A computer is **a tool** for addressing a problem

Problem Being Studied

Physical Phenomenon

CS 211 Goal #1: Know your tools (and their tradeoffs)

• Sustainability

•

Architecture:

"the complex or carefully designed **structure of [a computer]**"

Example: My Laptop (ASUS K6604)

Consumer's Perspective

Example: My Laptop's CPU (Intel i9-13xxx) CPU Integrator's Perspective

https://www.ebay.com/itm/166275134036

Example: My Laptop's CPU (Intel i9-13xxx) CPU Manufacturer's Perspective

Example: My Laptop's CPU (Intel i9-13xxx) CPU Designer's Perspective

Gracemont Core Block Diagram

Example: Add Operations in the Intel 8086 (1978) Logic Designer's Perspective

Example: My Laptop's CPU (Intel i9-13xxx)

Everyone has a different perspective based on their **level of abstraction**

Computing Abstractions

• Computer scientists and engineers are masters of abstraction

Software Hardware

Problem Algorithm Program Runtime (OS)

Microarchitecture Logic Circuits Physics

ISA (Architecture)

Abstraction is Good, Until It's Not

All abstractions have limits

• Especially with performance, security, bugs, failures

Code 2

void copyji(int src[2048][2048], int dst[2048][2048])
{
 int i,j;
 for (j = 0; j < 2048; j++)
 for (i = 0; i < 2048; i++)
 dst[i][j] = src[i][j];
}</pre>

Computer Systems: A Programmer's Perspective (2e) (Evaluations on a 2.7 GHz Intel Core i7)

Abstraction is Good, Until It's Not

All abstractions have limits

- Especially with performance, security, bugs, failures
- CS 211: understand the abstractions so you can:
 - Become more effective programmers
 - Jump to later systems courses

CS 211 Goal #2: Understand computing abstractions (and know when to break them)

Focus of CS 211

• Our focus will be on the hardware-software interface (ISA)

Breaking Computing Abstractions

- We will learn **new tools** to explore the HW-SW interface
 - C programming
 - Assembly language
 - Machine code
 - Digital logic
- These tools will give us a look **under the hood**
- CS 211 is all about the fundamentals
 - Maybe you won't touch these tools again
 - Maybe you will find a job using them
 - Maybe you will take them to the next level, or go even deeper ③

Real-world Demands

Problem Algorithm Program Runtime System software HW/SW Interface (ISA, ABI) Microarchitecture Logic gates Circuits Technology Physics

Real-world Constraints

Goals of CS 211

Goal #1:

Know your tools (and their tradeoffs)

Goal #2:

Understand computing abstractions (and know when to break them)

Goal #3: Gain a holistic view of the system

CS 211: Intro to Computer Architecture Computer Architecture: *"the complex structure of* a device that uses **physical phenomena** to model a **problem being solved**" The **science** and **art** of designing computing systems to solve a problem

Why Study Computer Architecture?

CS 211: Intro to Computer Architecture

- Unfortunately, CS 211 won't teach you how to build a computer
 - Need a few more classes for that $\textcircled{\circleon}$
- Instead, we'll scratch the surface to prepare you for more

•Part 1: CS 211 in a nutshell

•Part 2: Boring (but important) logistics

Instructional Staff

Course Instructor

Minesh Patel

Ramesh Balaji

Neha Jeyaram

Teaching Assistants

Nate Blum

Jerlin Yuen

???

Contacting the Instructional Staff

1)	Post	0	n <u>Ed</u> (pre	efe	rred)					
	ed CS 211	(Sect	ions 5-8) – Ed Discussion			-	ılı	\$ A	۰	M
	🕑 New Thread		Q Search	Filter 🗸						
	COURSES	+	0							
	CS 211 (Sections 5-8)		General Minesh Patel INSTRUCTOR 3d	A.						
	Sandbox	28								
	🗅 Drafts	1								

We will enroll you in Ed manually very soon

2 E-mail the mailing list cs211_s25_5678@email.rutgers.edu

Please do not send general questions to individual staff members (we will likely redirect you to Ed)

Course Website

- Link is on Canvas (<u>https://cs.rutgers.edu/~mp2099/courses/cs211-s25/index.html</u>)
 - Syllabus, schedule, materials, etc. will be posted here

• Anybody having trouble with this? Let us know.

Logistics

- Lectures: T/Th 3:50 PM 5:10 PM (Busch HLL-114)
- TA Recitation:
 - **#5**: Thursday 7:45 PM 8:40 PM (<u>Busch ARC-105</u>)
 - #6: Tuesday 7:45 PM 8:40 PM (<u>Busch ARC-105</u>)
 - #7: Thursday 5:55 PM 6:50 PM (<u>Busch SEC-202</u>)
 - #8: Tuesday 5:55 PM 6:50 PM (<u>Busch SEC-203</u>)
- Office Hours:
 - In-person TBA
- Attendance will NOT be taken: lecture and recitation are for your benefit
 - Lectures slides will be posted on Canvas and/or the website (best effort)
 - You may attend whichever and however many recitations you like

Textbook

Technically, there is no textbook for the course
We will roughly follow concepts in CS:APP 3e

Other good reference textbooks

Optional textbooks that we will reference include:

- *The C Programming Language 2/E* by Brian Kernighan and Dennis Ritchie. This is the classic K&R ANSI C book, which is standard against which all reference manuals are compared.
- *Modern C* by Jens Gustedt.

Texts for further reference:

- *Computer Organization and Design: The Hardware/Software Interface (RISC-V Edition)* by David Patterson and John Hennessy.
- *Introduction to Computing Systems: From Bits & Gates to C/C++ & Beyond 3/E* by Yale Patt and Sanjay Patel.
- Operating Systems Concepts by Silberschatz, Galvin, and Gagne.
- *Digital Design* by M. Morris Mano and Michael Ciletti.
- *Computer Architecture: A Quantitative Approach* by John Hennessy and David Patterson.
- *Digital Design and Computer Architecture, RISC-V Edition* by Sarah Harris and David Harris.

In addition, we will be referencing official manuals and original papers, soft copies of which will be provided as necessary.

Course Load

53%	6 programming assignments (PAs) •[3%] PA1 (Introduction to Linux) •[10%] PA 2-6
12%	11 "written" assignments (WAs)3 lowest grades are dropped
15%	Midterm in class (March 13)
20%	Final during the exam period (May 14)

Letter Grade Assignments

Course Percentage	Letter Grade
89.5+	A
[86.5, 89.5)	B+
[79.5, 86.5)	В
[76.5, 79.5)	C+
[69.5, 76.5)	С
[59.5, 69.5)	D

Programming Assignment 1

- PA1 will orient you on the PA workflow
 - Obtaining files: GitHub Classroom
 - Submitting files: GradeScope (via GitHub)
 - **Development:** Rutgers CS Instructional Lab (ilab)
- I will demo the process next lecture

fluxlab/programming-assign	ime × +			
ightarrow C $ ightarrow$ github.com	n/fluxlab/programming-assignment-0-1	test-mpatelh	*	🔒 Incognito
Fluxiab / progra	amming-assignment-0-test-mpatelh ¥ Pull requests ① Actions 田 Proj	Q 🗃 🕇	• + • 💿 It	
programming-assigned from fludab/cs211-s25-program	gnment Private 🔗 Edit Pin nming-assignment-0-test-cs211-s25-pa0	ns • 💿 Watch 0 •	양 Fork 0 ▼ ☆	Star 0 👻
양 main ▾ 양 ♡	Go to file	e + <> Code -	About	鐐
This branch is 1 commit ahea fluxlab/cs211-s25-program	d of ing-assignment-0-test-cs211-s25-pe0:m Sync fork	sin .	cs211-s25-programmi assignment-0-test-cs2 created by GitHub Cla Readme Ar Activity	ing- 211-s25-pa0 Issroom
gittiub-classroom(bot) a	Initial commit	6 hours ago	 Custom properties 0 stars 	
Makefile	Initial commit	6 hours ago	 0 watching 9 0 forks 	
README.md	add deadline	1 minute ago	Releases	
		R	No releases published	

(mp2099@ilab2.c	s.rutgers.edu) Pas	ssword:	neric x86_64)
Welcome to Ubun	tu 22.04.4 LTS (G	₩J/Linux 5.15.0-107-gen	
Last login: Fri	Dec 20 17:17:23	2024 from 128.6.25.90	
Ubuntu 22.04.4	LTS5.15.0–107–gene	eric	
Machine Name:	ilab2.cs	IP No: 128.6.1	3.3 2620:0:d60:ac0d::3
Fri Dec 20 06:1	7:05 PM EST 2024	Uptime:	211 days 04:41
Processes:	1311	Local/SSH/X2Go/XRDP/	/SCODE: 0/5/0/0/0
HostProxy:	16	TMUX/SCREEN/JUPYTER:	92/6/0
Connections:	39	Load/Total Users:	0/119
Free Memory:	655Gi of 1.0Ti	Free Swap:	511Gi of 511Gi
CPU Info:	AMD EPYC 7313 16-	-Core Processor - 64 co	ores
System CPU:	0.23%	User CPU:	0.18%
CPU Idle:	99.59%	IO Wait:	0.00%
	mp2099	No. of Sessions:	1
Login as:		Avail Freespace	868 87 GB

Logging in to ilab

Programming Assignments 2-6

• 50% of your total grade (10% each)

- 2. Introduction to C development + how computers represent numbers
- 3. Explicitly managing memory (when the language doesn't do it for you)
- 4. How computers represent programs as machine code
- 5. Emulating a simple RISC-V computer in C
- 6. Extending the emulator with more realistic memory

Written Assignments

- Questions related to weekly lecture topics
 - Helps you stay on track with lecture material
 - Helps me gauge how well students are following the material
- Administered through either **Canvas** or **GradeScope**
 - Multiple choice, short answer, and other autograded questions
- Representative of material that will be on the midterm and final

- In-person, handwritten, and manually graded
- Best way to prepare is to master the PAs and WAs

Collaboration Policy

- Please do work together to learn!
 - Discuss assignments with your classmates on Ed
 - Research and study concepts to prepare for exams
- The bottom line: submit your own work
 - Sharing or viewing solutions is academic misconduct
 - E.g., solutions from past semesters
 - E.g., posting your own solutions online
 - E.g., talking about your particular solution
 - ...
 - Please be careful! If in doubt, ask us and we will work with you

• We will send out a Google Form to survey where students currently stand

- We will have at least two more surveys:
 - Half-way survey
 - End of course survey

CS 211: Intro to Computer Architecture 1.1: Introduction and Syllabus

Minesh Patel Spring 2025 – Tuesday 21 January