
Symposium on Computer Animation (2009)
N. N. and N. N. (Editors)

SteerBug: An Interactive Framework for Specifying and
Detecting Steering Behaviors

Mubbasir Kapadia†1 Shawn Singh‡1 Brian Allen§1 Glenn Reinman¶1 Petros Faloutsos‖1,2

1University of California, Los Angeles,2Rhythm and Hues Studios

Abstract

The size of crowds that modern computer games and urban simulations are capable of handling has given rise
to the challenging problem of debugging and testing massive simulations of autonomous agents. In this paper,
we propose SteerBug: an interactive framework for specifying and detecting steering behaviors. Our framework
computes a set of time-varying metrics for agents and their environment, which characterize steering behaviors. We
identify behaviors of interest by applying conditions (rules) or user defined sketches on the associated metrics. The
behaviors we can specify and detect include unnatural steering, plainly incorrect results, or application-specific
behaviors of interest. Our framework is extensible and independent of the specifics of any steering approach. To
our knowledge, this is the first work that aims to provide a computational framework for specifying and detecting
crowd behaviors in animation.

Categories and Subject Descriptors(according to ACM CCS): I.6.8 [Simulation and Modeling]: Types of Simulatio-
nAnimation; I.2.11 [Artificial Intelligence]: Distributed Artificial IntelligenceIntelligent Agents

1. Introduction

Research in real-time pedestrian simulation has grown dra-
matically in recent years, and its importance is increasing in
education, entertainment, urban simulation, and more. For
the past several years, autonomous agents in virtual worlds
were so novel that their existence alone was immersive and
fulfilling. However, now that the initial novelty is wearing
off, the believability and intelligence of these agents is be-
coming increasingly important. In some sense, the research
field is quite mature, with a large variety of approaches that
have been proposed, and a number of games and virtual
worlds using autonomous steering agents in practice. How-
ever, there is a clear disparity between the variety of research
approaches and the quality of steering agents in real applica-
tions. The ultimate goal is still a difficult challenge: to create

† mubbasir@cs.ucla.edu
‡ shawnsin@cs.ucla.edu
§ vector@cs.ucla.edu
¶ reinman@cs.ucla.edu
‖ pfal@cs.ucla.edu

believable, human-like steering behaviors in complex, dy-
namic environments for hundreds, even thousands, of agents
in real-time.

A key challenge towards this goal is testing and debug-
ging steering behaviors. To illustrate this challenge, consider
a large-scale virtual world where developers want to find ex-
amples of an agent overtaking another agent – this could be
for the purposes of debugging a specific part of their steering
algorithm, verifying that particular code-paths are reached,
or simply to find an interesting scenario to meet the needs
of their specific application. Such a behavior is sufficiently
rare that it is difficult to find, yet common enough to be im-
portant to the end-user, and too complex to be trivially de-
tected. Generally, validating steering behaviors by visual in-
spection is impractical for large worlds. Smaller-scale simu-
lations cannot rigorously cover all situations that agents will
encounter in rich, unconstrained environments. Moreover,
agents can vary dramatically in their physical characteris-
tics, attitudes (i.e. aggressive or passive), and goals, which
complicates testing/debugging even further. Mainly for these
reasons, research contributions in steering tend to focus on
only a subset of desired human-like behaviors, and industry

c© The Eurographics Association 2009.

Kapadia et al. / Specifying and Detecting Steering Behaviors

applications tend to be conservative, only supporting behav-
iors and algorithms that are analytically predictable.

A common practice in the industry is tostress testand
soak testan application. These are long-termautomatedtests
designed to make sure that an application meets certain stan-
dards of quality for production. Stress and soak testing are
traditionally used to identify if the application crashes, or
if performance dips below some threshold. We propose to
apply automated stress and soak testing to agent steering be-
haviors as well: not only for testing performance and ap-
plication stability, but also to help identify situations where
agents achieve some desired behavior, do something unex-
pected and interesting, or may need to be debugged. Such an
automatic system needs to solve two challenging problems:
first, it needs a flexible and intuitive way to specify steering
behaviors of interest, and second, it needs a way of detecting
steering behaviors during simulation. These are the issues
we address in this paper.

Contributions. We propose an interactive framework for
specifying and detecting steering behaviors. The framework
computes a set oftime varying metrics(TVMs) by applying
a set of pre- and user-defined operators on the position and
orientation traces of every object and agent in a simulation.
Users can then specify steering behaviors by applying sim-
ple or complex conditions on these TVMs, which we call
rules. Users can also input sketches to match to a particular
TVM, such as drawing a spatial trajectory or a timeline of
the agent’s speed, and they can extend the framework with
additional TVMs, operators, or modes of input as necessary.
We demonstrate the framework’s ability to detect simple be-
haviors as well as more elaborate behaviors with intuitive
specifications.

2. Related Work

Research in steering has matured considerably over the last
few years with a large number of approaches being tried and
tested. These include, but are not limited to the following:

• Dynamics based Approaches: Dynamics based mod-
els represent the environment with potential fields or
flow maps, where each agent is treated as a particle
(e.g., [BH97,G∗01,TCP06,HFV00]).

• Rule-based Approaches: Rule-based models rely on
a predefined list of conditions and actions to perform
steering. (e.g., [LD04,LMM03,PPD07,Rey99,RMH05,
ST05,PAB07,Bou08,MH04]). Recently, even hybrid ap-
proaches are being actively explored, capable of high
density crowds (e.g., [PAB07,SGA∗,vdBPS∗08]).

• Data-driven Approaches: Data-driven methods use ex-
isting video data or motion capture to derive steer-
ing choices that are then used in virtual worlds
(e.g., [LCHL07,LCL07]).

These approaches are generally targeted at specific sub-
sets of human steering behaviors and use their own cus-

Figure 1: Overview of the framework.

tom test cases for evaluation and demonstration. The work
in [SKN∗09] proposes a standard suite of test cases that rep-
resent a large variety of steering behaviors and is indepen-
dent of the algorithm used. However, this technique is used
to evaluate the efficiency of approaches offline and is not
intended to serve as an aid fortesting and developmentin
real-time.

The most mature and well studied industry that uses crowd
simulations is the gaming industry. Games are complex soft-
wares where several interdependent modules, often built in-
dependently, are integrated together in a complete system.
Hence, the development risks in game development are par-
ticularly high. For this reason,testing, debugging and verifi-
cation [SHHS02] form an integral part of a game’s software
development life-cycle.

There exists a clear disparity between the advancements
in steering approaches and the techniques used to test them.
Surveys among game developers [LS02, McF06] show that
even though the importance of automated testing is recog-
nized, only a fraction of current game projects employ auto-
mated testing. This fact is further emphasized for pedestrian
simulations, where there is no clear way of avoiding manual
testing. Manual testing does not scale well with complexity
of environments and number of agents. For these reasons, the
state of the art in the gaming industry, e.g. [Gam08,Ubi08],
simulates only a small number of slow moving agents with
predictable conditions that can be manually tested.

3. Our Framework

An overview of our framework is shown in Figure1. The
simulator of a virtual world, at every point in time, pro-
vides the (a) position and (b) orientation of every agent, and
the (c) bounding geometry of each obstacle. Our framework
interprets simulation by computing a large number oftime
varying metrics(TVMs): quantities defined at every point in
time that measure some property of a single agent, a group of
agents, or a region in the environment. TVMs are computed
in three main ways: (a) by the simulation itself, (b) by ap-

c© The Eurographics Association 2009.

Kapadia et al. / Specifying and Detecting Steering Behaviors

plying operators to existing TVMs (Section3.1), and (c) by
using a sketch specified by the user (Section3.2). TVMs
capture key aspects of the motion of the agents and their
interactions, and they are used to intuitively characterize the
behaviors of agents.

We can then specify agent behaviors by defining condi-
tions over the TVMs, which we callrules(Section3.3). Each
rule applies thresholds and performs logic operations on
TVMs. This allows the framework to detect simple and com-
posite sequences of behaviors, identify properties of agents
in the simulation, and measure the similarity between behav-
ior or sketches.

3.1. Computing Time Varying Metrics

The position and orientation TVMs computed by a simu-
lation for each agent have most of the information we are
interested in observing. However, it is not straightforward to
specify complex behaviors with these TVMs alone. To allow
users to easily specify complex behaviors, it is necessary to
provide derived TVMs that have additional and more intu-
itive interpretations, such as velocity, and distance to near-
est neighbor. The most important TVMs that we use in our
framework are listed in Table1. Most of our TVMs are com-
puted by a set ofoperators, such as a derivative, or a corre-
lation measure.

Our general notation for an operator is:

operator{m1(t),m2(t), . . .}, (1)

wheremi(t) are input TVMs. Implicitly, all TVMs have a
window interval[t −w, t] that specifies the time window that
the operator should use. The size,w, of this window can vary
from one frame all the way to the beginning of simulation,
i.e.,[0, t]. Note that operations on TVMs produce TVMs that
can also be operated upon. In fact, some of the TVMs that we
use are computed by a sequence of operations. Our operators
are listed in Table2 and described as follows:

• Basic operators: These operators include the max and
min of any TVM over a window, as well as an indicator
function for custom events. In combination with the sum
operator, indicator functions can also be used as counters.
For example, to detect oscillations, we create a TVM that
counts how many times the angular velocity flips direction
(changes sign) over a window of 3 seconds.

• Derivatives and integrals: These operators are used
to compute many more dynamics quantities from posi-
tion and orientation, including velocity, acceleration, and
more. Derivatives are very meaningful, because they char-
acterize the rate of change of any TVM.

• Statistical moments: Statistical moments are yet more
ways that a TVM can be interpreted. For example, we
compute mean and variance of many TVMs over a 3-
second window. The mean over a window allows us to in-
terpret an instantaneous metric without the high frequency

Name Symbol Units

Position ~x(t) -
Orientation ~o(t) -
Total path length l(t) m
Displacement over window ‖x(t)−x(t −w)‖ m
Speed s(t) m/s
Velocity ~v(t) m/s
Acceleration ~a(t) m/s2

Kinetic Energy E(t) J=N.m
Degrees turned θ(t) deg
Angular Speed ω(t) deg/s
Angular Acceleration α(t) deg/s2

Number of collisions nc(t) -
Collision penetration dp(t) m
Time spent in collision tc(t) s
Distance from target dtarget(t) m
Dist. from nearest object dobj(t) m
Dist. from nearest agent dagent(t) m
Number of agents in region nagents(t,~x) -
Density of agents in region ρ(t,~x) agents/m2

Avg.~v(t)of agents in region ~µv(t,~x) m/s

Table 1: Some of the time varying metrics (TVMs) in our
framework. Many more metrics are computed than shown
here. All metrics, including total path length and window
averages, vary over time.

components, while variance over a window character-
izes how noisy the TVM might be. In future work, when
we consider integrating machine-learning techniques as a
third way to specify behaviors, it may also be useful to
compute skewness, kurtosis, and higher order moments.

• Similarity measures: It is often useful to compare how
similar two TVMs are to each other. For example, we
may want to identify when an agent’s trajectory matches
a user’s input sketch, or we may want to identify when
the distance between two agents is linearly decreasing. To
measure the similarity of two TVMs, we measure their
normalized correlation. In some cases we also need to
measure the similarity of two spatial vectors. In this case,
we measure their colinearity – which is 1 if the vectors
face the same direction, -1 if they face opposite direc-
tions. In their simplest form, correlation and colinearity
are both dot products, the major distinction is that cor-
relation shifts the TVMs to the mean, while colinearity
does not. We have experimented with the distance mea-
sure proposed in [ACH∗91] and the Hausdorff distance.
However, in our current framework, the correlation oper-
ator has provided sufficient results.

• Geometric properties: Many TVMs are inherently vec-
tor quantities, and so it is useful to compute lengths
of vectors, Euclidean distance, computing collisions (i.e.
thresholds over distances), and other related geometric
properties.

c© The Eurographics Association 2009.

Kapadia et al. / Specifying and Detecting Steering Behaviors

Operator Symbol Formula

Indicator function I{condition/event} I(t) = 1 if condition/event occurred, 0 otherwise

Min min{m(t)} min{m(s)|s∈ [t −w, t]}
Max max{m(t)} max{m(s)|s∈ [t −w, t]}
Derivative d

dt{m(t)} d
dt{m(t)}

Sum over window sum{m(t)} ∑t
s=t−w m(s)

Mean (average) mean{m(t)} µ(t) = 1
w ∑t

s=t−w m(s)

Variance var{m(t)} σ(t) = 1
w ∑t

s=t−w(m(s)−µ(t))2

Correlation corr{m1(t),m2(t)} ∑t
s=t−w(m1(s)−µ1(t))(m2(s)−µ2(s))

(w−1)
√

σ1(t)σ2(t)

Colinearity col{ ~m1(t), ~m2(t)} ~m1(t) · ~m2(t)

Table 2: Some of the operators used to compute TVMs. All metrics except derivative and colinearity can be defined over an
arbitrary window size w, ranging from instantaneous (w= 0) to the entire simulation history.

3.2. Sketch-Based Interface

Sketches can be used to easily describe interesting behaviors
that cannot be intuitively specified using rules. The user may
sketch the behavior of any TVM. However, sketches are es-
pecially well suited to represent spatial TVMs such as the
trajectories of agents. Given a sketch, we compute its simi-
larity to the related TVM over a sliding window. When the
similarity measure crosses a threshold, the agent is said to
exhibit the behavior described by the curve. The user also
has the freedom to draw multiple curves on the sketch-pad.
Each curve represents the desired behavior of a separate
agent. This multi-agent behavior is detected when each of
the individual behaviors are simultaneously detected in dif-
ferent agents when they have the same spatial relationship
as the sketch. Using this interface, multiple agent interac-
tions can be easily specified that may not be intuitively de-
scribed using rules, as shown in Figure8. Currently, we use
a correlation operator to compute the similarity measure be-
tween curves and provides translation and scale invariance.
Rotation invariance can be incorporated into our system by
detecting patterns over derivatives of spatial TVMs.

We refer the reader to the vast body of existing liter-
ature in pattern classification [DHS01, KLV00] and shape
matching [VV01] to identify advanced techniques such as
the Frechet Distance [Rot07] and methods based on shape
descriptors [NF07] which could be incorporated into our
framework in future work.

3.3. Using Rules to Specify Behaviors

Rules are conditions on one or more TVMs of one or more
agents that represent an interesting behavior in a simulation.
An atomic rule is a single condition on one TVM for one
agent. When the condition is true, it represents that the agent
exhibited a basic behavior or property at that time. For exam-
ple, when the instantaneous speed of an agent,s(t), crosses a

desired threshold (2.0 m/s for walking), it indicates the agent
walked unrealistically fast. This can be represented by the
following atomic rule:a = s(t) > Desired. Atomic rules
serve as the building blocks for complex rules, which rep-
resent sequential or parallel occurrences of basic behaviors,
even for multiple agents over different TVMs. We employ
the following syntax for complex rules:

• a1∨a2∧a3: A behavior in which atomic behaviors,a1 or
a2 anda3 are simultaneously exhibited.

• [c1]∧ [c2]: A behavior in which complex behaviorsc1 and
c2 are seen in different agents.

• c1⋄c2: A behavior in which complex behaviorsc1 andc2
are seen in the same agent one after another.

• [c1]⋄ [c2]: A behavior in which complex behaviorsc1 and
c2 are seen in different agents one after another.

• [c1]a ⋄ [c2]b: A behavior in which complex behaviorsc1
andc2 are seen in agents a and b respectively, one after
another.

Using this syntax-based interface, we have devised a set of
rules that describe common anomalies and interesting steer-
ing behaviors. These rules are discussed in more detail in Ta-
ble3. In addition, custom rules and metrics can be defined to
detect other behaviors to meet the needs of any specific ap-
plication. As long as the necessary information exists in the
input simulation, any behavior that a user may wish to spec-
ify can be defined using the right combination of metrics and
rules.

4. Using the Framework

This section discusses the use of our framework in: (1) de-
tecting anomalies that arise in most steering simulations
(Section4.1), (2) specifying and detecting user-defined be-
haviors of interest (Section4.2), (3) matching user-defined
sketch patterns over the trajectories of one or more agents
(Section4.3), and (4) facilitating stress and soak testing of
agent steering (Section4.4).

c© The Eurographics Association 2009.

Kapadia et al. / Specifying and Detecting Steering Behaviors

Rule Interpretation

dp(t) > Max∧ tc(t) > Max Thresholded collision event.

s(t) > Max
Agent violates physical
constraints on speed.

~a(t) > Max
Agent violates physical
constraints on acceleration.

ω(t) > Max
Agent violates physical
constraints on angular speed.

dobj(t) < Min ∧
corr{dobj(t),1− t} > 0.9

Agent is steering into an
obstacle.

dagent(t) < Min ∧
corr{dagent(t),1− t} > 0.9

Agent is steering into another
agent.

mean{dobj(t)} > Max Wall-hugging behavior.

s(t) = Zero Agent momentarily stops.

s(t) > Desired Agent momentarily speeds up.

mean{s(t)} = Zero Agent stationary over window.

mean{s(t)} > Desired
Agent exceeds desirable speed
consistently.

sum{θ(t)} > Desired
Noticeable turn over a short
period.

mean{ω(t)} > Desired
Agent consistently exceeds
desired angular speed.

~a(t) > Desired Sudden acceleration.

s(t) = Zero ∧ dobj(t) > Max ∧
dagent(t) > Max

Agent stationary in absence of
obstacles and threats.

sum{l(t)} > Max ∧

‖x(t)−x(t −w)‖ < Min
Agent moved without progress
(backtracking).

sum{I{ω(t) flips sign}} > Max Agent has oscillations.

sum{θ(t)} > Max∧
sum{I{ω(t) flips sign}} < Min

Agent steered in a circle.

corr{dtarget(t), t} > 0.9
Agent traveling away from the
target.

Table 3: Some of the rules used to identify behaviors of in-
terest.

4.1. Detecting Common Bugs in Steering

There are several common anomalous behaviors that are
prevalent in steering simulations today. These include
unnatural oscillations, steering into walls, circular motion,
wall-hugging, unnecessary stopping, and violation of
physical constraints. We provide the user with a list of
pre-defined behaviors, defined using rules, which represent
these common bugs. A list of these rules is provided in
Table3. We demonstrate the use of these pre-defined rules
to validate a simulation of 500 agents in an environment
with randomly positioned obstacles. We discuss some of
these rules here and refer the reader to the supplementary
video for a demonstration of the rules being flagged.

n
o
s
c
{v
(t
)}

0

10

20

30

time (frame)

100 120 140 160 180 200 220 240 260 280 300 320 0

Figure 2: Demonstration of oscillations being flagged be-
cause the number of oscillations in angular speed over a 3-
second window,sum{I{ω(t) flips sign}}, crosses a thresh-
old.

(a) (b)

(c) (d)

Figure 3: Common bugs in steering: (a) Wall Hugging.
(b) Thresholded collisions. (c) Circular motion. (d) Dense
environments.

Oscillations: Dynamics-based approaches are often suscep-
tible to oscillations in the motions of the simulated agents.
Using our framework, we describe a simple rule that can be
used to detect oscillations:

sum{I{ω(t) flips sign}} > Max.

Figure2 illustrates the rule being flagged as the number of
oscillations over a window in the angular speed of the agent
crosses a threshold.

Circular Motion: An agent traveling in a circle can be de-
scribed as the total degrees turned over a window being ap-
proximately 360 degrees while the agent does not perform
oscillations in turning. Using the TVMs described above, the
rule for a circular motion behavior is:

sum{θ(t)} > Max∧sum{I{ω(t) flips sign}} < Min.

Dense regions: Detecting clusters of agents grouped in a re-
gion of the environment is often indicative of bottlenecks
or incorrect steering behaviors. The environment density
TVM serves as a powerful indicator of where other bugs
may be occurring. The rule used to flag dense regions is:
ρ(t,~x) > Max.

c© The Eurographics Association 2009.

Kapadia et al. / Specifying and Detecting Steering Behaviors

(a) (b) (c)

Figure 4: Flagging of overtake behavior. These snapshots
correspond to the TVMs shown in Figure5.

4.2. Detecting More Elaborate Behaviors

Our framework can easily be extended by writing custom
rules that flag interesting behaviors that are specific to the
steering application. We demonstrate the expressive power
of our rule-based syntax by specifying and detecting two
complex behaviors:overtakingandpick-pocketing.

Overtaking: Overtaking is a high-level behavior that rep-
resents a sequence of interactions between two agents (Fig-
ures4 and5). We specify agent A overtaking agent B with
the following sequence of behaviors: (1) The distance be-
tween agent A and B initially decreases, (2) agent A reaches,
and passes Agent B (the act of overtaking) and, (3) agent A
goes further ahead and the distance between the two agents
increases. The rule for overtaking is:

corr{dtarget(t),1− t} > Max

⋄ corr{col{~o(t),~x(t)−~xtarget(t)},1− t} > Max

⋄ corr{dtarget(t), t} > Max

Pick-Pocketing: Imagine a scenario where two thieves co-
operate to steal someone’s wallet. The first thief is the dis-
tractor, grabbing the attention of the victim so that the second
thief can steal the wallet, unnoticed. This composite behav-
ior can be described using the following sequence of atomic
behaviors: (1) The distractor nears the victim (distance from
target monotonically decreases), (2) the distractor distracts
the victim (victim faces in the direction of the distractor), (c)
the thief closes in on victim (distance from target monotoni-
cally decreases) and, (d) the thief makes a run for it (distance
from target monotonically increases) (Figure6). Using our
rule-based syntax, we describe this behavior as follows:

[corr{dtarget(t),1− t} > Max∧dtarget(t) < Min]distractor

⋄ [col{~o(t),~x(t)−~xdistractor(t)} > Max]victim

⋄ [corr{dtarget(t),1− t} > Max∧dtarget(t) < Min]thief

⋄ [corr{dtarget(t), t} > Max]thief

c
o
rr
(
d
o
b
j,
1
-t
)

-1

0

1

time (frame)

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500

(a)

c
o
rr
{c
o
l{
o
a
(t
),
x
a
(t
)-
x
b
(t
),
1
-t
}

-1

0

1

time (frame)

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 0

(b)

c
o
rr
(
d
o
b
j,
t
)

-1

0

1

time (frame)

200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 0

(c)

Figure 5: TVMs of an overtaking behavior: (a) Distance
between agents decreases (distance correlates with1− t).
(b) The transition from being behind the agent to in front
of the agent (colinearity correlates with1− t). (c) Distance
between agents increases.

4.3. Use of Sketch-Based Interface

The sketch-based interface serves as an easy way for a user
to specify behaviors that may be non-intuitive using the rule
system. Using sketches, our framework can identify behav-
iors such as a complicated trajectory (Figure8a and8b), and
multi-agent interactions (Figure8c and8d). A demo of this
interface is shown in the supplementary video.

4.4. Facilitating Soak and Stress Testing

Our framework can be used as a powerful tool to provide
additional insight while performing stress and soak tests on
a steering simulation. We demonstrate this by running an
evacuation simulation of 2000 agents over 10000 frames and
check for physically invalid steering behaviors. We observe
that the number of bugs increases exponentially with in-
crease in time as illustrated in Figure9. A more careful anal-
ysis reveals that a bottleneck is created at the exit point and
the agents exhibit aggressive behavior by squeezing through,
resulting in collisions.

Performance: We evaluated the performance of our frame-
work by comparing the processing times of the simulation
with and without SteerBug. We observe a 22% increase in
computational costs when all the rules in SteerBug are ac-
tivated. This overhead can be reduced due to the selective
computation of TVMs based on the rules that are activated.

5. Conclusion

We have proposed an interactive framework for specifying
and detecting steering behaviors. At the core of our frame-
work lies a set of time-varying metrics and associated op-

c© The Eurographics Association 2009.

Kapadia et al. / Specifying and Detecting Steering Behaviors

(a) (b) (c) (d)

Figure 6: Pick-pocketing behavior being flagged. These snapshots correspond to the TVMs shown in Figure7.

c
o
rr
{d
a
g
e
n
t(
t)
,1
-t
}

-1

0

1

time (frame)

150 200 250 300 350 400 450 500 550 600 650 700 750 800 0

(a)

c
o
l{
\o
(t
)}

-1

0

1

time (frame)

150 200 250 300 350 400 450 500 550 600 650 700 750 800 0

(b)

c
o
rr
{d
a
g
e
n
t,
 1
-t
}

-1

0

1

time (frame)

150 200 250 300 350 400 450 500 550 600 650 700 750 800 0

(c)

c
o
rr
{d
a
g
e
n
t,
 t
}

-1

0

1

time (frame)

150 200 250 300 350 400 450 500 550 600 650 700 750 800 0

(c)

Figure 7: TVMs used for pick-pocketing: (a) The distrac-
tor nears the victim (distance from victim monotonically de-
creases). (b) The distractor distracts the victim (victim turns
to face the distractor). (c) The thief closes in on the victim
(distance from target monotonically decreases). (d) The thief
runs away (distance from victim monotonically decreases).

erators, that can be combined with the proposed rule-based
scheme to define complex agent behaviors. We have demon-
strated the effectiveness of our approach with a number of
challenging examples. Our framework is extensible and in-
dependent of the specifics of any steering algorithm. To our
knowledge, this papers takes a first step towards solving the
challenging problem of testing and debugging large scale
simulations that involve autonomous agents.

6. Acknowledgements

We wish to thank the anonymous reviewers for their com-
ments. The work in this paper was partially supported by
NSF grant No. CCF-0429983. We thank Intel Corp., Mi-

(a) (b)

(c) (d)

Figure 8: Sketch-based specification of a 3 loop behavior
(a) and a four-way crossing behavior (c), and corresponding
instances being flagged at (b) and (d) respectively.

Figure 9: Results of evacuation simulation of 2000 agents
over 10000 frames: Number of bugs flagged vs. time.

crosoft Corp., and AMD/ATI Corp. for their generous sup-
port through equipment and software grants. We also thank
Gabriele Nataneli for helping to develop the sketch based
interface.

c© The Eurographics Association 2009.

Kapadia et al. / Specifying and Detecting Steering Behaviors

References

[ACH∗91] ARKIN E., CHEW L., HUTTENLOCHER D.,
KEDEM K., M ITCHELL J.: An efficiently computable
metric for comparing polygonal shapes.IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 13, 3
(1991), 209–216.

[BH97] BROGAN D. C., HODGINS J. K.: Group behav-
iors for systems with significant dynamics.Auton. Robots
4, 1 (1997), 137–153.

[Bou08] BOULIC R.: Relaxed steering towards oriented
region goals.Lecture Notes in Computer Science 5277,
MIG 2008(2008), 176–187.

[DHS01] DUDA R., HART P., STORK D.: Pattern Classi-
fication. Wiley, 2001.

[G∗01] GOLDENSTEINS.,ET AL .: Scalable nonlinear dy-
namical systems for agent steering and crowd simulation.
Computers and Graphics 25, 6 (2001), 983–998.

[Gam08] GAMES R.: Grand Theft Auto iv, 2008.

[HFV00] HELBING D., FARKAS I., V ICSEK T.: Simu-
lating dynamical features of escape panic.Nature 407
(2000), 487.

[KLV00] K ULKARNI S. R., LUGOSI G., VENKATESH

S. S.: Learning pattern classification— a survey (invited
paper). 134–162.

[LCHL07] L EE K. H., CHOI M. G., HONG Q., LEE J.:
Group behavior from video: a data-driven approach to
crowd simulation. InSCA ’07: Proceedings of the 2007
ACM SIGGRAPH/Eurographics symposium on Computer
animation(2007), pp. 109–118.

[LCL07] L ERNER A., CHRYSANTHOU Y., L ISCHINSKI

D.: Crowds by example.Computer Graphics Forum 26,
3 (September 2007), 655–664.

[LD04] L AMARCHE F., DONIKIAN S.: Crowd of virtual
humans: a new approach for real time navigation in com-
plex and structured environments.Computer Graphics
Forum 23(2004), 509–518(10).

[LMM03] L OSCOSC., MARCHAL D., MEYER A.: Intu-
itive crowd behaviour in dense urban environments using
local laws. InTPCG ’03: Proceedings of the Theory and
Practice of Computer Graphics 2003(2003), IEEE Com-
puter Society, p. 122.

[LS02] LLOPIS N., SHARP B.: By the Books: Solid Soft-
ware Engineering for Games, 2002. Games Developers
Conference, Round Table.

[McF06] MCFADDEN C.: Improving the QA Process,
2006. Games Developers Conference, Round Table.

[MH04] M ETOYER R. A., HODGINS J. K.: Reactive
pedestrian path following from examples.The Visual
Computer 20, 10 (November 2004), 635–649.

[NF07] NATANELI G., FALOUTSOS P.: Robust classifi-
cation of strokes with SVM and grouping. InISVC ’07
(2007), Springer-Verlag, pp. 76–87.

[PAB07] PELECHANO N., ALLBECK J. M., BADLER

N. I.: Controlling individual agents in high-density crowd
simulation. InSCA ’07: Proceedings of the 2007 ACM
SIGGRAPH/Eurographics symposium on Computer ani-
mation(2007), pp. 99–108.

[PPD07] PARIS S., PETTRE J., DONIKIAN S.: Pedestrian
reactive navigation for crowd simulation: a predictive ap-
proach. InEUROGRAPHICS 2007(2007), pp. 665–674.

[Rey99] REYNOLDS C.: Steering behaviors for au-
tonomous characters. InGame Developers Conference
(1999).

[RMH05] RUDOMÍN I., M ILLÁN E., HERNÁNDEZ B.:
Fragment shaders for agent animation using finite state
machines.Simulation Modelling Practice and Theory 13,
8 (2005), 741–751.

[Rot07] ROTE G.: Computing the fréchet distance be-
tween piecewise smooth curves.Comput. Geom. Theory
Appl. 37, 3 (2007), 162–174.

[SGA∗] SUD A., GAYLE R., ANDERSEN E., GUY S.,
L IN M., MANOCHA D.: Real-time navigation of inde-
pendent agents using adaptive roadmaps. InVRST ’07:
Proceedings of the 2007 ACM symposium on Virtual real-
ity software and technology, ACM, pp. 99–106.

[SHHS02] SANTHANAM P., HAILPERN B., HAILPERN

B., SANTHANAM P.: Software debugging, testing, and
verification. IBM Systems Journal 41(2002), 4–12.

[SKN∗09] SINGH S., KAPADIA M., NAIK M., REIN-
MAN G., FALOUTSOS P.: SteerBench: A Steer-
ing Framework for Evaluating Steering Behaviors.
Computer Animation and Virtual Worlds(2009).
http://dx.doi.org/10.1002/cav.277.

[ST05] SHAO W., TERZOPOULOS D.: Autonomous
pedestrians. InSCA ’05: Proc. of the 2005 ACM
SIGGRAPH/Eurographics symp. on Computer animation
(2005), pp. 19–28.

[TCP06] TREUILLE A., COOPERS., POPOVIĆ Z.: Con-
tinuum crowds. InSIGGRAPH ’06: ACM SIGGRAPH
2006 Papers(2006), pp. 1160–1168.

[Ubi08] UBISOFT: Assassins creed, 2008.

[vdBPS∗08] VAN DEN BERG J., PATIL S., SEWALL J.,
MANOCHA D., LIN M.: Interactive navigation of mul-
tiple agents in crowded environments. InSI3D ’08: Pro-
ceedings of the 2008 symposium on Interactive 3D graph-
ics and games(2008), pp. 139–147.

[VV01] V ELTKAMP R. C., VELTKAMP R. C.: Shape
matching: Similarity measures and algorithms. pp. 188–
197.

c© The Eurographics Association 2009.

