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SteerBench: a benchmark suite for
evaluating steering behaviors

By Shawn Singh*, Mubbasir Kapadia, Petros Faloutsos and Glenn Reinman
..........................................................................

Steering is a challenging task, required by nearly all agents in virtual worlds. There is a large
and growing number of approaches for steering, and it is becoming increasingly important
to ask a fundamental question: how can we objectively compare steering algorithms? To our
knowledge, there is no standard way of evaluating or comparing the quality of steering
solutions. This paper presents SteerBench: a benchmark framework for objectively
evaluating steering behaviors for virtual agents. We propose a diverse set of test cases,
metrics of evaluation, and a scoring method that can be used to compare different steering
algorithms. Our framework can be easily customized by a user to evaluate specific behaviors
and new test cases. We demonstrate our benchmark process on two example steering
algorithms, showing the insight gained from our metrics. We hope that this framework can
grow into a standard for steering evaluation. Copyright © 2009 John Wiley & Sons, Ltd.
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Introduction

Immersive virtual worlds are quickly growing in impor-
tance for education, collaboration, and entertainment.
Most virtual worlds are populated with autonomous,
intelligent agents that require efficient, robust algorithms
to navigate in a large-scale, complex environment.
Even when an agent has cognitively decided its
destination, the problem of maneuvering around the
various obstacles and other agents in the environment is
extremely complex, leaving the agent with an arbitrarily
large number of possible steering choices.

This rich set of steering choices reflects a large number
of techniques that can be used to implement steering in
virtual worlds. Current algorithms are usually focused
on a subset of the problem’s challenges, and often papers
have only enough space to showcase their novel features.
Anyone who wants to implement a steering algorithm
will see an overwhelming number of existing approaches
and not know their strengths and limitations.

Given the importance of steering in modern applica-
tions and the growing number of steering algorithms, it
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is important and timely to ask the question, how can we
compare different steering approaches? To our knowledge
this paper makes the first attempt to answer this
fundamental question.

A steering benchmark that characterizes and compares
algorithms is also needed to help researchers focus
on developing the right kinds of steering behaviors—
for example, an algorithm should avoid collisions
by making intelligent human-like steering decisions
instead of relying on collision resolution to prevent
interpenetration. Similarly, we want a framework to test
and expose the predictive elements of the human steering
process.

The main challenge in designing steering benchmarks
is how to evaluate a steering algorithm objectively.
The quality of results of a steering algorithm depends
on many factors, many of which are situation-specific
and/or depend on cognitive decisions by the agents.
For example, an agent may decide to push through a
crowd or politely go around the crowd, depending on
the agent’s situation and personality. To remain objective
even with seemingly ad hoc constraints, we propose
that steering evaluation should satisfy the three criteria:
(1) the test cases should be representative of a broad
range of steering situations that are common in real-
world scenarios, (2) the evaluation should be blind to the
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specifics of the steering algorithm, and (3) the evaluation
should be customizable to allow a user to test for certain
expected behaviors over others.

In this paper, we present SteerBench, a novel framework
for comparing steering behaviors. SteerBench contains
two major components:
� A diverse suite of steering benchmarks: We propose a

forward-looking set of scenarios that capture the broad
range of situations a steering algorithm may encounter
in practical applications.

� A method and metrics of evaluation: We propose a set
of metrics that can be used to evaluate the results
of steering algorithms. We also propose a method of
scoring the results, so that two steering algorithms can
be compared.

Our test cases are carefully chosen to test several
fundamental and challenging steering tasks. We separate
the concepts of providing test cases and evaluating
steering results. This allows users to specialize test cases
to their needs, and our benchmark evaluation would
still apply to the custom test cases. Our evaluation uses
metrics computed only from the position, direction, and
the goal that the agent is trying to reach. These metrics
do not require any knowledge of the algorithm that
produced the steering result, yet at the same time, the
metrics are insightful for debugging and developing
better steering behaviors.

Related Work

Benchmarking is a crucial process in many fields—ranging
from business management to software performance.
Benchmark suites have been developed for a variety
of purposes related for graphics and multimedia,
for example, 3DMark graphics hardware benchmark,
RealStorm global illumination benchmark, animation
for ray tracing,1 SPEC architecture benchmark, and
many more. In these fields, benchmarks have clear
metrics for comparison: performance in seconds, signal-
to-noise ratio, power consumption, area, monetary price,
etc. Steering behaviors and other aspects of artificial
intelligence do not have a clear objective metric—instead,
much of the evaluation is inherently subjective.

Metrics of Evaluation

Pelechano et al.2 use an interesting metric, presence, to
evaluate crowd behaviors, however it requires a user’s
in-depth participation. Some steering papers have used

number of collisions as a metric to minimize when
developing the algorithm, but not as an explicit metric
for evaluation (e.g., Reference [3]). Other works (e.g.,
Reference [4]) use specialized metrics, such as “rate
of people exiting a room.” Some papers on pedestrian
simulation simply rely on subjective evaluation of their
results. SteerBench proposes a rich set of metrics that
can capture these and other properties of any algorithm
automatically.

It is well accepted that efficient behaviors are natural.
Efficiency metrics have been used to create more
believable or natural motion for human animation,
e.g., References [5–7] and in general it is common to
use efficiency as an optimization criteria, for example
when animating birds,8 humans,9 and fish.10 Our work
applies this same principle to the evaluation of steering
behaviors, while keeping the user in control of the
evaluation process.

Approaches to Steering

Most steering behaviors can be classified into three
major categories: dynamics-based, agent-based, or
data-driven. Dynamics-based models represent the
environment with potential fields or flow maps, often
treating each agent as a particle (e.g., References [11–13]).
Rule-based models use heavy branching to determine
the exact scenario being described, and perform an
action associated with that scenario (e.g., References
[3,14–18]). Recently, even hybrid approaches are being
actively explored, capable of high density crowds (e.g.,
References [19–21]). Data-driven methods use existing
video data or motion capture to derive steering choices
that are then used in virtual worlds (e.g., References
[22,23]).

Overview of SteerBench

SteerBench consists of two major parts: (1) a diverse set
of test cases, and (2) a benchmark evaluation approach
that computes several metrics and scores a steering
algorithm.

The current suite contains 38 scenarios, ranging from
fundamental sanity checks to very challenging deadlock
and crowd scenarios. Several of the scenarios have many
variations, resulting in a total of 56 test cases. The
test cases can be roughly classified in five conceptual
categories: (1) simple validation scenarios, (2) basic
one-on-one interactions, (3) agent interactions including
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obstacles, (4) group interactions, and (5) large-scale
scenarios. All scenarios are detailed in Tables 1–5.

Each test case specifies a number of agents and
static objects. Static objects are specified by a bounding

box. Agents are specified by their size, initial position,
initial direction, desired speed, and target location(s).
Additionally, each agent has a set of weights that
configure the evaluation process. Finally, each test

Scenario Description

Simple One agent steering towards a target located to the left, right, or behind.
Simple-obstacle One agent steering towards a target located behind an obstacle.
Simple-wall Agents steering around a wall to reach a target.
Local-minimum One agent steering around a U-shaped wall to reach a target outside the U-shape. The

agent should not get stuck inside the U-shape.
Curves One agent steering through an S-curve to reach the target. Note that the walls of the

corridor have intentionally jagged outlines to reveal the resolution and/or smoothing
abilities of steering algorithms.

Table 1. Simple validation scenarios. These scenarios are designed to test very basic, fundamental
abilities of a steering agent that every algorithm should be able to handle

Scenario Description

Oncoming Two agents traveling in opposite directions towards a head-on collision.
Crossing Two agents crossing paths at various angles.
Oncoming-trick Two oncoming agents that will not collide because their targets are before their point of

intersection. The agents should recognize that they do not pose a threat to each other
and maintain their course.

Crossing-trick Two crossing agents that will not collide because their targets are before their point of
intersection. The agents should recognize that they do not pose a threat to each other
and maintain their course.

Similar-direction Two agents with slightly different goals traveling in a similar direction. The agents should
not unnecessarily predict collisions.

Table 2. Basic one-on-one interactions. These scenarios test the ability of two agents to steer around
each other in the absence of static obstacles

Scenario Description

Oncoming-obstacle Two oncoming agents, with an additional obstacle in the way.
Crossing-obstacle Two crossing agents, with an additional obstacle in the way.
Surprise Two agents that do not see each other until the last minute because of large obstacles.

A few collisions are acceptable, but the agents should still proceed efficiently.
Squeeze Two oncoming agents walking through a narrow hallway. Agents should understand

that both of them can fit without having to slow down.
Doorway-one-way Two agents enter a doorway from the same side. There is room for only one agent at

a time through the doorway.
∗Doorway-two-way Two oncoming agents walk through a doorway from opposite sides. One agent must

step aside to allow the other to go first.
Overtake One agent is expected to overtake the other agent in a hallway.
∗Overtake-obstacle One agent is expected to overtake the other agent, with obstacles in the hallway.

Table 3. Agent-agent interactions including obstacles. These scenarios test the ability of an agent to
navigate around static objects while interacting with other agents

*Indicates cases that we predict will be very difficult
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Scenario Description

Fan-in A small group of agents aiming for the same target. This tests how agents cooperate
while contending for the same space.

Fan-out A small group of agents aiming for slightly separated targets. This tests whether agents
will unnaturally stick to the crowd when their goal is in a different direction.

Cut-across One agent cutting across a small group.
3-way-confusion Three agents traveling in different directions, meeting at nearly the same time.
4-way-confusion Four agents traveling in four opposing directions, meeting at nearly the same time.
∗4-way-obstacle Four agents crossing paths with a static object in the way.
Frogger One agent encounters many perpendicular crossing agents.
Lone-vs.-group One agent encounters a group of agents traveling in the opposite direction. Three test

cases involve a group of 10 people with tight, medium, and large spacing, respectively.
∗Oncoming-groups A small group of agents encounters another small group of agents traveling in opposite

direction. Three test cases use varying densities of the groups.
3-squeeze Two agents facing the same direction encounter an oncoming agent in a narrow hallway.
∗double-squeeze Two agents facing the same direction encounter two oncoming agents in a narrow

hallway.
∗wall-squeeze Two agents facing the same direction encounter an oncoming agent in a narrow hallway

with an obstacle.

Table 4. Group interactions. Group interactions are composed of several agents and static objects,
intended to test an algorithm’s ability to handle a variety of common situations

*Indicates cases that we predict will be very difficult

Scenario Description

Hallway-one-way Many agents traveling in the same direction through a hallway.
Hallway-two-way Many agents traveling in either direction through a hallway. Agents should form lanes.
∗Bottleneck-squeeze All agents begin on one side of the arena, and must enter and traverse a hallway to

reach the target. Note that hard corners at the bottleneck are much more challenging
than rounded corners.

∗Evacuation All agents must exit a crowded room through a narrow door, and fan-out from the
exit.

∗Free-tickets All agents are aiming for the same target in the middle of the arena, and have a random
secondary goal once the middle target is reached. This scenario is particularly difficult
because agents that reach the middle goal must then turn to face a dense oncoming
crowd.

Random Each agent is placed randomly in the arena and has an individual random target. Here,
stress is placed on handling a large number of agents. Our default test case specifies
5000 agents for this scenario.

Forest Each agent is placed randomly in an arena filled with small obstacles. Our default test
case specifies 500 agents for this scenario.

Urban Each agent is placed randomly in an arena filled with building-sized obstacles. Our
default test case specifies 500 agents for this scenario.

Table 5. Large scale scenarios. These scenarios are designed to stress-test the ability of an algorithm
to handle macroscopic situations, and to scale to a large number of agents

*Indicates cases that we predict will be very difficult
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Figure 1. SteerBench workflow. A user records the performance of an algorithm on our test cases. Our framework then computes
metrics and scores which can be used to evaluate the algorithm in a variety of ways.

case also specifies conditions that define “passing” or
“failing” the test case.

The workflow of our framework is shown in Figure 1.
First, the user runs his algorithm on our test cases, and
records the position, direction, and goal target of every
agent for every frame. SteerBench provides a C++ library
that reads and writes a specific file format, for easy
integration with existing steering algorithms. Second,
our evaluation tool reads the recorded information
and computes detailed statistics, primary metrics, an

aggregate score, and whether the algorithm passed the
test case.

Given the results of an algorithm on our test cases, our
metrics, and our scoring method, the user has several
options to evaluate steering algorithms. (1) The user can
rank algorithms based on an overall score, computed
across all test cases. Such a score is primarily meaningful
for comparing two or more algorithms. (2) The user can
rank algorithms based on one test case, or one agent’s
behavior within a test case. (3) The user can evaluate
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whether an algorithm “passes” or “fails” a test case, or
count how many test cases it passes. (4) The user can
examine detailed metrics of the performance of an agent,
for debugging or detailed evaluation. (5) Finally, the user
can visually inspect results of an algorithm using our test
cases.

Benchmark Suite

Tables 1–5 describe the scenarios included in the current
version of our benchmark suite. These scenarios are
visually depicted in Figure 2. Many of these test cases
are very challenging and forward-looking, and we expect
that initially very few algorithms, if any, will be able to
successfully handle all scenarios gracefully.

Test Case Design Choices

The main challenge when designing the benchmark suite
is to cover the range of possible scenarios without having
an inordinate number of test cases. With this in mind, we
choose our test cases to be common, frequently appearing
scenarios, but with challenging, worst-case parameters.
For example, most of the static obstacles have sharp
corners which are generally more difficult to handle than
smooth ones.

In our experience, an agent in a typical real-world
environment faces the following situations:

1. Walking alone: Real-world agents can steer directly
to their goals, navigate around fixed obstacles, and
maintain their desired speed when there are no other
constraints. Such behaviors are fundamental, and
must be included in a benchmark suite.

2. Local interactions: Most of the time, an agent interacts
with only 2–4 nearby agents and a few obstacles at a
time. SteerBench tests how an algorithm behaves with
two, three, and four agents approaching each other
in various directions, with and without static objects
constraining the possible solutions.

3. Walking as part of a small group: Often an agent moves
in the same direction with 2–6 other agents and
encounters other groups and obstacles. Real-world
agents generally have empathetic understanding
of how the group should behave and willingly
cooperate.

4. Walking as part of a crowd: Groups of hundreds or
thousands of agents tend to form less frequently,
and only in specific situations, for example when a
large number of agents exit or enter a building at

the same time. SteerBench includes test cases to test
for crowd queuing, lane formation, and navigating
against oncoming crowds.

5. Deadlock avoidance: Real-world agents usually un-
derstand when a situation will result in all agents
getting stuck (i.e., deadlock) and how to avoid these
situations by stepping out of the way or backtracking.
Backtracking is particularly challenging for most
algorithms because an agent may need to move away
from its goal in order to resolve the deadlock.

Situations involving many agents can often be viewed
as a sequence of local interactions. For example, a lone
agent that tries to go through a dense oncoming crowd
of hundreds of agents may only consider 4–5 people at a
time. Based on this observation if a steering algorithm is
capable of these local interactions, it will very likely also
be capable of handling larger scenarios.

It is fair to ask the question, what is the effect of the
specific number of agents in the large scale examples? We
have selected default values for these parameters based
on what we think are average cases in the real world.
We have no reason to believe that the specific number
of agents in the large scale examples is crucial. If an
algorithm can handle a bottleneck scenario with exactly
500 agents, it should be able to handle around 500 as
well. In any case, our goal is to provide an estimate of an
algorithms performance, not a proof of its robustness or
correctness.

Customizing the Suite

It is clearly not possible to cover every conceivable
situation in our test cases. Therefore, we have
designed our benchmarking approach to be flexible and
customizable, so that users can quickly focus on the
details of interest to their algorithm.

The user can easily create custom scenarios to use with
our existing evaluation tools. This allows our benchmark
evaluation process to be useful even for applications
that cannot use our provided test cases. For example,
behaviors found in a sports game will have unique
steering scenarios that should be evaluated with unique
criteria. A user can easily use our file-format to describe
such scenarios and how they should be evaluated.

In addition to creating custom scenarios, users can
(and are encouraged to) change evaluation criteria of
existing cases to suit their needs. While these modified
criteria would not be part of the standard test case suite,
they can be useful for personality-dependent steering
or different types of agents, e.g., automobiles. In its
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Figure 2. Visual depiction of the scenarios in the current version of our benchmark suite. The number in parentheses indicates
how many agents are specified in the scenario. Scenarios annotated with an asterisk (∗) are in our opinion more difficult scenarios.

Some scenarios are not shown here.

............................................................................................
Copyright © 2009 John Wiley & Sons, Ltd. 539 Comp. Anim. Virtual Worlds 2009; 20: 533–548

DOI: 10.1002/cav



S. SINGH ET AL.
...........................................................................................

current form, our test cases are intended to roughly
approximate typical humans: agents have a diameter
of 1 m (roughly the distance from elbow to elbow of
an average human) and an average walking speed of
1.3 m/second.24 The user can use the same (or slightly
modified) initial conditions to simulate cars, bicyclists,
or other steering agents, by customizing the evaluation
criteria. Our evaluation tool will compute the statistics
for the user to interpret appropriately. Examples of this
are shown in results below.

Metrics of Evaluation

Given the suite of benchmarks, the next question is
how to evaluate the result of a steering algorithm.
First, at minimum, the algorithm must meet specific
constraints defined by the test case—for example, in
the Overtake scenario, the overtaking agent must reach
the target before the slow agent. Second, assuming that
an algorithm meets the minimum constraints for the
test case, we can evaluate how efficiently the agents
performed the task. To compute the success conditions
and efficiency of a test run, SteerBench computes several
metrics over the test run. This section describes these
metrics.

The metrics are listed in Table 6. The three primary
metrics are: (1) number of collisions, (2) time efficiency,
and (3) effort efficiency. These metrics can be measured
directly from the output of a steering algorithm,
without any knowledge about the algorithm itself. We
choose these primary metrics based on the widely
accepted postulate (see Related Work above) that natural
behaviors are usually very efficient, as long as they meet
constraints appropriate to the task (e.g., no significant
collisions with other agents). Optimizing time efficiency
and effort efficiency are usually conflicting goals,
and each test case defines the balance between these
metrics.

Primary Metric 1: Number of
Collisions

The first primary metric is the number of collisions that
occur for a given agent. In most cases, fewer collisions
indicate more realistic steering behavior. One notable
exception is the surprise scenario, where it would be
natural for two agents to collide because they do not see
each other soon enough. It is worth noting that a user
may choose to ignore incidental collisions, for example

two agents brushing shoulders. Our detailed metrics
described below allow such subtle customizations.

Primary Metric 2: Time Efficiency

Time efficiency measures how quickly the agent is able
to reach its goal destinations. Of course, the quicker the
agent reaches its goal, the more time efficient the agent
is. Our evaluation tool measures time efficiency as the
total time (in seconds) that an agent spends to reach its
goal.

Primary Metric 3: Effort Efficiency

Effort efficiency measures how much effort an agent
spends to reach its goal destinations. The less effort an
agent spends, the more effort efficient the agent is. Our
evaluation tool measures effort efficiency as total kinetic
energy that an agent used to reach its goal.

Interpreting Efficiency Metrics

In most cases, optimizing time and effort efficiency are
conflicting goals. In this way the combined interpretation
of time and effort efficiency provides insight into a
spectrum of behaviors. Some agents may desire to reach
their destinations quickly, willing to spend more effort.
Other agents may desire to save effort and slowly,
politely progress towards their goals.

Detailed Metrics

The rest of the metrics are shown in Table 6. The sliding
window in our current implementation is an interval of
3 seconds. We compute a new window for each frame,
and finally store the max/min of these values. The
collision metrics, max time spent in collision and max
penetration can indicate whether the collision events
were serious or not—for example, agents that brush past
each other will have a very small penetration.

These detailed metrics are interesting to examine when
a user knows the expected behavior of a scenario. A user
will usually be able to identify one or two metrics that
indicate unnatural behavior in the scenario. For example,
if a character is expected to go straight towards its goal
with very little turning, then the “total degrees turned,”
should be close to zero. Similarly, if an agent is expected
to have exactly one abrupt turn in the scenario, then “max
turning over a window interval” should be somewhat
large, while the “average angular speed” should be small,
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Metric Interpretation

Primary metrics # Unique collision events If too large, can indicate poor
behaviors

Total time agent spent to reach goal
(seconds)

Time efficiency (lower is better)

Total kinetic energy spent
(Kg (m/second)2)

Effort efficiency (lower is better)

Collision metrics Maximum time spent in a collision If small, then collision events may
be forgivable

Maximum penetration of collisions (m)
Turning metrics Total degrees turned (deg) Amount of turning effort

Average angular speed (deg/second) Time-independent amount of
turning effort

Maximum instantaneous angular speed
(deg/second)

If small, indicates the agent turned
very smoothly

Maximum turning over window (deg) Indicates whether the agent had to
turn quickly at least once

# Times angular speed changed sign If too large, might indicate steering
oscillations

Distance and Speed metrics Total distance traveled (m) Path length
Average Speed (m/second) Can compare to desired speed
Maximum instantaneous speed
(m/second)

If too large, can indicate unrealistic
or cheating behaviors

Maximum distance traveled over
window (m)

Might indicate if the agent had to
speed up temporarily

Minimum distance traveled over
window (m)

If small, indicates the agent had to
stop or slow down significantly

Speed-change metrics Total speed change (m/second) Amount of movement effort,
‖velocity1‖ − ‖ velocity2‖

Average speed change (m/second2) Time-independent amount of
movement effort

Maximum instantaneous speed change
( m/second2)

If small, indicates the agent moved
very smoothly

Maximum speed change over window
(m/second)

If too large, might indicate
unrealistic locomotion

# Times speed change flipped sign If too large, might indicate
unrealistic oscillations in speed

Acceleration metrics Total acceleration (m/second) Second-order effort efficiency
(lower is better)

Average acceleration (m/second2) Time-independent effort
Maximum instantaneous acceleration
(m/second2)

If small, indicates the agent moved
very smoothly

Maximum acceleration over window
(m/second)

If large, might indicate unrealistic
behavior

Table 6. SteerBench metrics and their intuitive interpretation. Metrics can certainly have more
interpretations than given here
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and “max turning over a window interval” should be
roughly equal to “total degrees turned.”

Evaluating Constraints for a Test
Case

As mentioned previously, each test case specifies
constraints that an algorithm must satisfy. These
constraints are not “success” criteria—it is not possible
to define a complete set of criteria that define the success
of an algorithm. Instead, the conditions are meant to
identify obvious misbehaviors that an algorithm should
not have.

So far we have found that the constraints required by
a test case can be defined in terms of the above metrics.
The first constraint is that the agent reaches its goal.
Most of the smaller test cases require zero collisions,
and most test cases also require that agents reach their
goals within a certain amount of time. We can also detect
other forms of misbehavior in this way, such as when
an algorithm uses a huge instantaneous velocity, greatly
exceeds the desired velocity, or has too many oscillations
over a window interval.

Benchmark Scoring

After computing the metrics described in the previous
section, the final task is to compute a meaningful score
that represents the quality of the steering behavior. A
score can be computed for (1) a single agent in a test case,
(2) all agents in a test case, or (3) across all test cases. In
this section we describe our method of computing such
scores.

A Note About Benchmark Scores

It is important to note that scoring is not intended to be
a proof of an algorithm’s effectiveness. Even in widely
accepted benchmarks such as SPEC CPU benchmarks,
the scoring method does not attempt to avoid bias or
exploits that can skew scores. Instead, the purpose of
scoring is to create a simple number that allows for a
quick, intuitive estimate of evaluation, especially when
comparing two approaches. To do a more rigorous
analysis of the pros and cons of an algorithm, users need
to manually examine the detailed metrics, and perhaps
even tailor their own test cases.

Scoring One Agent in One Test
Case

An agent’s score is computed by combining the three
primary metrics described above: number of collisions,
time efficiency, and effort efficiency. Each test case
describes their relative importance as numerical weights,
and each agent in the test case has its own unique
set of weights. Note that even though these weights
can be customized, each test case has specific default
weights, and users are not required to tweak or tune any
paremeters in SteerBench.

The score for a single agent is a weighted sum of the
primary metrics: Si = wc,i(αC) + wt,i(βT ) + we,i(γE) =
C′ + T ′ + E′, where Si is the score of the ith agent, wc,i,
wt,i, and we,i are the weights of the ith agent, C is the
number of collisions, T is time efficiency, and E is effort
efficiency. The constants α, β, and γ are used to transform
C, T, and E into normal form—that is, these constants
are used so that the three metrics are measured on the
same scale. Determining appropriate values of α, β, and
γ is a challenging problem that we leave for future work.
For now, these constants are all 1.0, and we absorb this
complexity in the manually chosen weights.

Scoring all Agents in One Test
Case, and Across all Test Cases

To evaluate all agents in test case A, we compute the
averages of the primary metrics over n agents, and
then compute a weighted sum with an additional set of
weights associated with the test case: SA = wc,A

n

∑n

i=1 C′ +
wt,A

n

∑n

i=1 T ′ + we,A

n

∑n

i=1 E′. Because each agent can have
its own set of weights, a user can easily control the
relative importance of agents for the scoring process in
their own test cases. By default in our test cases, all agents
have equal priority. Finally, to score an algorithm across
m test cases, we can compute a sum total of the scores
from each test case, Sm = ∑

A
SA.

Example Evaluations

In this section we demonstrate the features of SteerBench
by showing several examples of benchmark evaluation.
Features include: (1) benchmark scores that concur with
user opinions and correctly indicate when one test-
run is better than another, (2) the ability of a user to
tune test cases to favor certain types of behavior over
others during scoring, (3) the ability of our framework
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to evaluate cars or other steering agents, not just
pedestrians, (4) the usefulness of detailed metrics for
examining an algorithm, and (5) the method to combine
the scores across agents and across test cases.
Algorithms used for evaluation: We emphasize that the
focus of our work is the benchmark evaluation process,
not the resulting behaviors of the algorithms. Therefore,
for the rest of this section we refer to algorithm
A and algorithm B as the two steering algorithms
that we compare. Algorithm A is a straightforward
rule-based approach that integrates A-star planning,
dynamic threat-prediction, basic obstacle avoidance, and
space-time planning. We use this algorithm because
it can be tweaked to perform intelligently, naively, or
simply ignoring other dynamic agents. Algorithm B is
loosely based on an implementation of potential-fields.
Algorithm B has some of the classic pitfalls of potential-
fields,25 but is capable of some interesting behavioral

functions that the rule-based approach cannot perform,
such as the ability to overtake or cluster into groups.

Benchmark Scoring Example

Table 7 shows algorithms A and B being compared for
24 of our test cases. Algorithm A passed 20/24 test cases,
failing the Overtake, Oncoming-groups, and both Hallway
scenarios. Algorithm B passed 21/24 test cases, failing
Wall-squeeze and both Hallway scenarios. It is still possible
to examine primary and detailed metrics on the failed
test cases. To compute scores, we used only two sets of
weights, one set designed to weigh time efficiency more
importantly, and another set designed to weigh effort
efficiency more importantly. In most cases, we weighed
it more important to minimize effort, but in some cases
it is more favorable to finish sooner.

Score for Score for % users % users
Test case A B favored A (%) favored B(%)

Simple 273 303 100 0
Simple-obstacle 264 268 95 5
Curves 2527 2687 95 5
Oncoming 269 283 100 0
Crossing 266 276 84 16
Oncoming-trick 132 130 42 52
Crossing-trick 117 116 11 89
Oncoming-obstacle 294 285 32 68
Crossing-obstacle 254 260 84 16
Surprise 412 420 89 11
Squeeze 336 341 95 5
Doorway-one-way 2304 2470 89 11
Doorway-two-way 355 375 100 0
Overtake 2741 2423 5 95
3-way-confusion 291 312 79 21
4-way-confusion 272 284 95 5
4-way-obstacle 272 328 95 5
Frogger 242 254 74 26
Oncoming-groups 640 589 16 84
3-squeeze 326 319 11 89
Double-squeeze 328 309 16 84
Wall-squeeze 2596 2935 95 5
Hallway-one-way 9225 10049 89 11
Hallway-two-way 2660 3813 100 0

Table 7. Comparison between two algorithms using SteerBench’s default scoring process. Lower
scores are better. Note that these scores are not meant to be interpreted alone, but only to be
compared between algorithms for the same test case. SteerBench’s scores concurred with users’

opinions
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Figure 3. Snapshots of the Overtake scenario performed by algorithm A (top) and algorithm B (bottom). Algorithm A does not
succeed in overtaking.

We conducted a brief user study of 19 subjects, also
shown in Table 7. They were asked to give their opinion
about which algorithm was more intelligent in each test
case. For each test case, the subjects of the study did not
know which algorithm was shown first or second, and
they were not given any criteria related to our metrics for
how to evaluate the agents.

To compare algorithms A and B, we can (1) count the
number of pass/fails or (2) count the number of better
scores. If we count only the number of pass/fails for each
algorithm, it appears that algorithm B wins by a small
margin. However, note that the constraints for “passing”
a test case are meant only to capture obvious errors and
cheats. On the other hand, if we count the number of
better scores, algorithm A wins by a much larger margin,
and concurs with user opinions. This is because the
benchmark score can capture more information about
which algorithm is more believable.

Customizating the Evaluation

Example 1: Favoring politeness versus aggressiveness:
Figure 3 shows the two algorithms running the Overtake
scenario. Algorithm A is “polite” and does not overtake,
while algorithm B successfully overtakes. Table 8 shows
the primary metrics and total score for the agent that is
expected to overtake. The final scores are dependent on
the choice of weights wc, wt , and we. For the primary
metrics and final score, lower is better. This table shows
that the scoring process is capable of favoring “polite”
behavior or “aggressive” behavior, depending on the
weights a user defines for a test case. Using the polite
set of weights, algorithm A scores better, and using the

Algorithm A Algorithm B

# Collisions 0 1
Time efficiency 25.7 16.95
Effort efficiency 254.7 400.3
wc,polite 50 50
wt,polite 1 1
we,polite 1 1
Polite score 280 467
wc,aggressive 50 50
wt,aggressive 100 100
we,aggressive 1 1
Aggressive score 2829 2145

Table 8. Primary metrics, weights, and final
weighted-sum scores of the Overtake scenario,
computed with SteerBench. Lower scores are
better; with polite weights algorithm A scores
better, and with aggressive weights, algorithm B
scores better. Note that polite and aggressive
scores cannot be compared because they use

different weights

aggressive set of weights, algorithm B scores better. By
default, the Overtake scenario uses aggressive weights.
Example 2: Ability to evaluate non-pedestrian situations:
Table 9 shows our evaluation results for two variations
of the Frogger scenario. In the first variation, all agents
are pedestrians, and all pedestrians are expected to be
able to avoid collisions without unnecessarily slowing
down. In the second variation, one agent is a car, and
the pedestrians must avoid crossing the car’s path.
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Metric Frogger-ped Frogger-car

wc 10 10
wt 200 200
we 1 1
# Unique collision events 0 0
Time efficiency 11.40 12.05
Effort efficiency 31.62 58.42
Benchmark score 2311.6 2468.4
Maximum time spent in a collision 0 0
Maximum penetration of collisions (m) 0 0
Total degrees turned (deg) 40.81 4.14
Average angular speed (deg/second) 2.41 0.24
Maximum instantaneous angular speed (deg/second) 62.96 18.33
Maximum turning over window (deg) 25.30 4.12
# Times angular speed changed sign 1 0
Total distance traveled (m) 13.69 13.56
Average speed (m/second) 0.810 0.782
Maximum instantaneous speed (m/second) 1.30 1.30
maximum distance traveled over window (m) 3.90 3.90
minimum distance traveled over window (m) 3.00 1.92
Total speed change (m/second) 21.32 57.55
Average speed change (m/second2) 1.26 3.32
Maximum instantaneous speed change ( m/second2) 3.74 9.60
Maximum speed change over window (m/second) 9.36 48.19
# Times speed change flipped sign 2 2
Total acceleration (m/second) 31.62 58.42
Average acceleration (m/second2) 1.87 3.37
Maximum instantaneous acceleration ( m/second2) 3.76 9.60
Maximum acceleration over window (m/second) 14.36 48.95

Table 9. Detailed metrics collected for two variations of the Frogger scenario. They are effectively
two different scenarios, so they cannot be directly compared, but examining the detailed metrics is

insightful

Specifically, the pedestrians are expected to stop for
the car without turning too much. These metrics are
computed for the pedestrian immediately next to the
car in the snapshot depicted in Figure 4. The reader
should be aware that the overall scores between the two
variations of Frogger are not meant to be compared. They
are effectively two different scenarios—one using only
pedestrians, and one using a car.

A tremendous amount of insight can be gained
by examining the detailed metrics in Table 9. For
example, note that for Frogger-car, the four statistics
of (scalar) speed-change are nearly identical to the
four statistics of (vector) acceleration. This implies that
the agent’s effort is almost entirely due to changes in
speed, and not due to turning. It is also interesting to
compare the total, average, instantaneous, and window

forms of one metric. For example, in the Frogger-car
scenario, notice that the maximum acceleration over a
3-second window (48.95 m/second) is close to the total
acceleration (58.42 m/second)—this means there was
one major event that caused most of the effort to be spent
in less than 3 seconds.
Example 3: Evaluation of all agents in a test case: Figure 5
shows the Oncoming-groups scenario, using four different
algorithms. Table 10 shows the corresponding scores,
where all agents are averaged to form a score for the
entire test case.

This example shows the ability of our evaluation to
score an entire test case. As seen in Figure 5, algorithm
B has a more intelligent way of handling the scenario,
resulting in only one collision where two agents “brush
shoulders”. The intentionally dumb algorithm is almost
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Figure 4. Variations of the Frogger scenario, showing the use of SteerBench for other types of agents. Left: the original scenario
using only pedestrians. Pedestrians are expected to slow down only a little, and turn to avoid each other. Right: Frogger scenario
converted into a car. Here, the pedestrians are expected to stop and wait for the car to pass, without turning. Car model by Christian

Perle.

Figure 5. Two instances of the Oncoming-groups scenario. Left: algorithm A. The agents get jumbled, but still work efficiently.
Right: algorithm B. The agents cluster into groups nicely.

Algorithm Algorithm Intentionally No collision
Metric A B dumb avoidance

wc 50 50 50 50
wt 1 1 1 1
we 1 1 1 1
Average
Collisions/agent 0.33 0.167 0.67 3.7
Time efficiency 39 44.6 40.6 36.3
Effort efficiency 601 545 600 611
Benchmark score 657 598 673 831

Table 10. Comparison of several algorithms executing on the Oncoming-groups test case. Here, the
primary metrics and score are computed for the entire test case instead of an individual agent.

Algorithm B wins, and algorithm A comes in second
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as fast as algorithm A, and therefore has a similar (but
worse) score than algorithm A. Finally, without collision
avoidance, agents are very fast, but SteerBench correctly
penalizes the resulting number of collisions.

Discussion

The above examples illustrate the flexible relationship
between time efficiency and effort efficiency. To improve
time efficiency, an agent must put forth more effort to
reach its goal sooner. To improve effort efficiency, an
agent must try to reduce its total effort by steering the
smoothest path possible. In most cases, an algorithm
must compromise or prioritize between the two metrics,
and it is up to the specific test case (or the user) to define
which primary metrics take priority over others.

An algorithm cannot “cheat” in the default test
cases by trying to maximize efficiency without actually
accomplishing the goal, for the following reasons. First,
SteerBench assigns infinity to time efficiency if the agent
fails to reach its goal. Second, an agent cannot achieve
a good score by ignoring all other agents and reaching
its own goal regardless of collisions—such collisions
will greatly penalize the agent’s score, as shown in the
example in Table 10. Finally, the pass/fail constraints
defined by test cases ensure that the most obvious
errors and cheats are avoided. Thus, the only way for
an algorithm to outperform other algorithms using our
benchmark is to behave better—quickly reaching its goal
while minimizing effort and successfully avoiding all
potential collisions.

Conclusion

This paper proposed SteerBench, a framework for
evaluating steering behaviors. Our framework includes
a diverse suite of test cases and an objective method of
evaluation. Furthermore, it is blind to the specifics of the
steering algorithm, and it is extensible and customizable.
We hope that, with constructive feedback from the
community, this framework can grow into a standard for
evaluating steering algorithms.
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