COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds 2010; 21: 267-276
Published online 27 May 2010 in Wiley InterScience
(www.interscience.wiley.com) DOI: 10.1002/cav.367

Situation agents: agent-based
externalized steering logic

By Matthew Schuerman’, Shawn Singh, Mubbasir Kapadia and

Petros Faloutsos

We present a simple and intuitive method for encapsulating part of agents’ steering and
coordinating abilities into a new class of agents, called situation agents. Situation agents
have all the abilities of typical agents. In addition, they can influence the steering decisions

of any agent, including other situation agents, within their sphere of influence.
Encapsulating steering logic into moving agents is a powerful abstraction which provides
more flexibility and efficiency than traditional informed environment approaches, and
works with many of the current steering methodologies. We demonstrate our proposed
approach in a number of challenging scenarios. Copyright © 2010 John Wiley & Sons, Ltd.

KEY WORDS: crowd simulation; steering; group behaviors; situation agents

Introduction

Crowd simulation has become a topic of increasing
interest recently. Aside from the obvious entertainment
applications, it has implications for fields such as urban
planning, architecture, and law enforcement. One of the
most challenging aspects of crowd simulations is obtain-
ing the performance and simplicity required to make
them a practical tool, which often involves trading agent
sophistication for speed.

Many agent-based steering methods exhibit good per-
formance and realistic agent behavior in crowds of
reasonable density in open areas, but begin to have trou-
ble in situations where body language or social customs
become the dominant factor in human steering decisions.
Insuch cases, many steering methods are prone to exhibit
deadlocks or unnatural behaviors. To address this, agents
are often given enough sophistication to be able to recog-
nize such situations (or annotations in the environment)
and attempt to resolve them. This can either be done
using very robust planning techniques or by adding
specialized logic to the agent’s basic steering algorithm—
neither of whichis anideal solution. More robust steering
techniques often reduce performance, especially when
used by many agents. Similarly, augmenting the agent’s

*Correspondence to: M. Schuerman, University of Califor-
nia, Los Angeles, USA. CC: Petros Faloutsos UCLA, DCS
4531F Boelter Hall Los Angeles, CA 90095-1596. E-mail:
mschuerm@cs.ucla.edu

standard steering methods to deal with specialized situ-
ations can lead to extremely complex steering algorithms
which attempt to cope with a wide variety of special
cases. Both approaches result in polluting agents with
additional computation and storage costs in order to deal
with situations they might not even encounter.

A more effective solution is to externalize the special-
ized steering logic that deals with troubling cases to some
third party and allow agents to use the most fundamen-
tal form of their steering algorithm for their navigational
needs. The key idea of this paper is to use a new class
of agents, called situation agents, as this third party. Sit-
uations agents are similar to standard agents in many
regards: they have a defined location, size, velocity, and
goal. They can utilize steering strategies to interact with
other situation agents. However, they differ from stan-
dard agents in that they exist solely to supervise the
actions of other agents in localized scenarios that their
typical steering algorithms might not support.

Situation agents provide all the advantages of tra-
ditional informed environment approaches,'? as well
as further benefits. Since specialized logic is being
removed from standard agents, modularity and perfor-
mance are enhanced using either approach. However,
using agents as couriers for specialized logic provides
several advantages over traditional informed environ-
ment approaches:

(1) For reasons previously stated, environmental anno-
tation does not always significantly reduce the
standard agent’s complexity. Situation agents encap-

Copyright © 2010 John Wiley & Sons, Ltd.

M. SCHUERMAN ET AL

computer animation
& virtual worlds

sulate the logic for both the detection and resolution
of difficult situations in a different, and far
less numerous, population of agents. Also, when
influencing multiple agents, situation agents can
implement such logic with a broader view than indi-
vidual agents.

(2) Smart objects and areas! are better at segment-
ing complexity than environmental annotations, but
like annotations, are often static. Situation agents
give specialized steering behaviors intuitive ways to
change the area they affect through agent re-sizing
and movement, which can become important in het-
erogeneous or dynamic environments.

(3) Encapsulating behaviors into agents provides a pow-
erful interface for making hierarchical decisions.
Broadly scoped situation agents can choose the cor-
rect aggregate action for many agents, and then
individuals revise those suggestions as required.
Since situation agents are agents themselves, arbi-
trarily many layers of them can be used in this
fashion. This provides a natural paradigm for behav-
iors such as steering, where groups often attempt
to steer within larger groups. Also, because of this
hierarchy, macroscopic crowd behavior becomes a
controllable option, not an emergent property of an
algorithm. This is key to the results presented in this

paper.

Contribution

This paper proposes the concept of situation agents,
which allow specialized steering algorithms to be exter-
nalized from standard agents to a separate class of agents.
Such separation allows us to enhance agent-based steer-
ing algorithms to exhibit correct behavior in challenging
situations with minimal additional processing complex-
ity. Situation agents are also highly customizable and
localized, and offer a simple, intuitive, and efficient way
for animators and programmers to orchestrate crowd
behaviors on a fine scale. We illustrate this with three
specific examples: deadlock agents, groups agents, and
formation agents. Our results show agent cooperation to
resolve difficult scenarios, an important and challenging
aspect of realistic agent behavior.

The rest of this paper is organized as follows: Section
2 gives a brief summary of related literature, Section 3
explains some example situation agents in depth, Section
4 outlines our results, and finally Section 5 concludes and
discusses future plans.

Related Work

Since Reynolds’ pioneering work,* crowd simulation has
become a field of active and diverse research. The reader
is referred to Reference [5] for an extensive summary
of this work. These techniques draw inspiration from
a wide variety of sources including fluid dynamics,®
physics,7 robotics,® motion capture technologies,9 and
artificial life!” and thus vary significantly.

However, common themes do exist in all crowd simu-
lation frameworks. The problem of maintaining realistic
behavior in all cases while minimizing the processing per
agent has always been a paramount concern. Externaliz-
ing portions of agents’ complexity is one solution to this
problem, and it is the one we will focus on here. Several
frameworks!? include both smart areas and smart objects
which can dictate how an agent can interact with them.
The work in Reference [3] extends this notion to allow the
environment to add or remove behaviors from agents.
However, we are not aware of any previous attempts to
externalize steering behaviors to a distinct set of agents.
Composite agents!! did allow some agents to instantiate
and re-size a set of passive agents—proxy agents—to act
as obstacles to aid in navigation. However, proxy agents
donot contain any specialized logic or information, mak-
ing that methodology distinct from the one presented
here.

Situation Agents

Situation agents coordinate the behaviors of other agents
by modifying those agent’s parameters. In the their most
general form they can modify any parameter within
any agent, including other situation agents. Fully lever-
aged, this allows them to produce arbitrarily complex
hierarchies and behaviors from relatively simple and
modular components. However, for demonstration pur-
poses the situation agents presented in this paper modify
only two internal parameters, boldness and preferred veloc-
ity, and typically use only a single layer of hierarchy.
This compact interface makes them compatible with a
wide variety of simulation frameworks. We will discuss
how these parameters are implemented in the context
of the continuum crowds® (CC) and reciprocal velocity
obstacles'? (RVO) frameworks. These popular frame-
works employ quite different methodologies, and using
them as examples demonstrates the portability of our
approach.

Copyright © 2010John Wiley & Sons, Ltd.

Comp. Anim. Virtual Worlds 2010; 21: 267-276
DOI: 10.1002/ cav

computer animation
& virtual worlds

SITUATION AGENTS

Situation agents make their changes before the agents
they influence compute their actions. This allows the
influenced agents to use their own steering or behavior
logic to carry out the suggestions of the situation agents
and creates the hierarchy which is one of the primary
advantages of this technique. For the CC framework
these modifications would take place as the unit cost
field is being calculated. In RVO frameworks, situation
agents would process their actions first and during that
processing they would modify the parameters of the
agents they influence.

Boldness defines how likely an agent is to yield to other
agents during steering. An agent with boldness param-
eters set high will exert less effort to avoid other agents,
while an agent with low boldness parameters will act
more timidly. By modifying boldness parameters, situ-
ation agents can order some agents to yield and allow
others to pass. In the CC framework, boldness is varied
by changing the length and intensity of the discomfort
field projected in front of each agent: large and more
intense discomfort fields cause other agents to move out
that agent’s way. As a result that agent is not required
to as actively steer around others, effectively increasing
their boldness. In RVO frameworks, boldness is imple-
mented by modifying the safety factor and « parameter.
Decreasing an agent’s safety factor makes it less afraid
of collisions, while reducing its « parameter decreases its
responsibility for movement as two agents reciprocally
avoid each other. Tuning these two parameters changes
the boldness of individual RVO agents.

All the steering frameworks we are aware of calcu-
late either a best path or best velocity for each agent
which will most directly guide them toward their goal
during each iteration. This is an agent’s preferred velocity.
Situation agents modify this to herd other agents when
required. Ateach iteration the CC framework computes a
best path based on the unit cost field. Adding a local per-
turbation to the path and speed fields effectively changes
the best path and speed toward the goal for a CC agent. In
the RVO framework the preferred velocity is directly cal-
culated as a vector, typically the direction is toward the
next way-point on a pre-computed path and the speed is
the desired speed of the RVO agent.

Situation agents modify the preferred velocities of
other agents, 7%, by replacing them with 75", a
weighted average of a velocity of their own calcula-
tion, the correction velocity Ueorr, and the agent’s original
preferred velocity, as seen in Equation (1). For best
path formulations there is an analogous method which
involves adding a local perturbation to the distance
field. In Equation (1), and for the rest of this paper, the

subscript a implies an agent’s parameter and the sub-
script sa implies a parameter associated with a situation
agent.

TJEfnew = wsaacorr + (1 - wsa)ﬁsf (1)

The closer to 1 the weight w,, is, the stronger the influence
of a situation agent is on the preferred velocity of the
associated agent.

Varying the steering behavior of situation agents, the
weight in Equation (1), and the boldness parameters
of individual agents can produce a wide variety of
behaviors capable of addressing challenging crowd
simulation scenarios. Specifically, we will examine
how varying these options can make situation agents
effective in the cases of deadlocks (no steering), coherent
group behaviors (moderate weighting), and marching
formations (extreme weighting).

Example: Deadlock Agents

Consider the case of two groups of agents moving in
opposite directions arriving at a narrow hallway at the
same time. The hallway is so narrow that only a single
agent can pass through it at once. Clearly in such a case
one of the two groups of agents must wait while the other
one passes or a deadlock will arise. However, this can be
hard to anticipate and coordinate among independent
agents. In some frameworks cooperative planning has
worked, but this approach is computationally expensive
and hard to scale up to more than a handful of individ-
uals. To handle this coordination problem we introduce
the deadlock situation agent. This type of agent can mod-
ify the preferred velocities of all the nearby agents in
a centralized and efficient way to produce the required
waiting behavior.

Deadlock agents can be placed dynamically by the user
or statically by the framework. The environment is ana-
lyzed by the framework before the simulation begins to
find regions so narrow that only a single agent can pass
through at once. Deadlock agents are placed in the center
of such regions. They are stationary and circular in shape
with initial radii proportional to the longest side of the
narrow region. Agents within these radii are influenced
by the deadlock agents.

At each computation iteration deadlock agents per-
form the tasks outlined in Algorithm 1. They dynamically
expand their size by looking slightly past their current
radius (rs, + €) and then updating their radius to encom-
pass the furthest possible agent within a pre-defined
limit. This allows them to grow to influence—and pre-

Copyright © 2010John Wiley & Sons, Ltd.

Comp. Anim. Virtual Worlds 2010; 21: 267-276
DOI: 10.1002/ cav

M. SCHUERMAN ET AL

computer animation
& virtual worlds

Algorithm 1 Psuedocode for deadlock agents.

Vdetect <= Vsa + €
’ min
ri, < max(k x re, ")

for each agent a within r., do
// p’s represent the positions of the agents
du <~ ;)a - ﬁm

/

Fia <= max(re,. l|da|l)

if (0 -)/ (138 1191])) < 7 then
decrease boldness(a)
save possible favored direction(f)ff)
T) apf - ?} ,ff new
end if

end for

Tsq <= min(ry,, ro®

update favored direction()

vent deadlocks in—entire groups approaching a passage.
They can also contract by a fixed ratio, A, during each iter-
ation if all nearby agents are already within their radius.

Deadlock agents operate by instructing agents not
moving in a particular direction, the favored direction,
to yield. Moving with or against the favored direc-
tion is determined by using y as a threshold on the
normalized dot product of an agent’s preferred veloc-
ity and the favored direction. The favored direction
is first chosen to be the preferred velocity of the
first agent to arrive. So long as agents are currently
moving in that direction it remains unchanged. How-
ever, when the last such agent leaves, the preferred
direction becomes aligned with the preferred veloc-
ity of the agent closest to the center of the deadlock
agent.

Influenced agents are instructed to yield by reducing
their boldness and modifying their preferred velocities
using Equation (1) with the following correction velocity:

Veorr = (0B [|(cos 6, sin 6))

where 6 = arctan (y, — Vsa, Xs — Xsa) £ 90°. This causes
the agents not moving in the favored direction to move
aside so others can pass. The result of these modifications
is that, as groups of agents arrive at a narrow doorway,
oneisallowed to pass while others are forced to step aside
and wait. This continues until all the groups have passed.
In the rare event that multiple traffic agents attempt to
influence a single agent, only the correction velocity from
the nearest traffic is used.

Example: Group Agents

Often a desirable property of crowd simulations is that
groups of agents steer around each other coherently as
a whole. Group situation agents are designed to imple-
ment such behavior. Once associated with a group of
agents, group situation agents steer to avoid other group
agents with different goals and linearly combine the
resulting velocity with the preferred velocities of the
group’s members. As a result steering becomes hierarchi-
cal for the influenced agents: groups first attempt to avoid
each other and then individual agents refine that group
steering decision to suit their needs. This produces the
desired cohesion without inhibiting individual steering
capabilities or adding additional complexity to standard
agents.

Group situation agents should be instantiated around
groups of agents moving toward the same goal at similar
speeds. They are capable of dynamically re-sizing them-
selves in exactly the same manner as deadlock agents.
However, they only expand to influence agents moving
to the same goal as the rest of the agents in the group.
Once instantiated, they act as agents moving toward the
same goal as the agents in their group. They can use any
steering algorithm, but we have found using a modified
version of the standard agent’s steering algorithm is sim-
plest to implement. The required modification is to allow
group agents to selectively ignore both standard agents
and other group agents moving toward the same goal
while steering. Note that this effectively allows group
agents moving toward the same goal to overlap, which is
required to effectively cover irregularly shaped groups of
many individuals. This modification is compatible with
all steering frameworks which we are aware of. The result
of this steering, vs,, becomes Veory in Equation (1), which
dictates the new preferred velocities of the group mem-
bers. Varying ws, controls the degree of synchronization
in the movements of the group members.

Group agent placement and membership can be the
responsibility of the user, or it can be done in various
automated ways. In our examples, we use the follow-
ing greedy algorithm, which provides group coherence
and effective lane formation. At every update each agent
and its neighbors are examined to determine how many
of them are moving toward similar locations in the near
future, and that count is stored (this is already done by
agents in most frameworks, so these counts are often
already available). At the beginning of each update those
stored numbers are sorted, and group agents are created
around the center agents of the largest potential groups.
They begin to expand to encompass the group at the next

Copyright © 2010John Wiley & Sons, Ltd.

Comp. Anim. Virtual Worlds 2010; 21: 267-276
DOI: 10.1002/ cav

computer animation
& virtual worlds

SITUATION AGENTS

iteration of computation. Group situation agents are also
automatically removed when the group reaches a goal or
if they are not being used. Specifically, if a group situa-
tion agent does not steer around other group agents for
some set period of time or moves too far off the center of
its group, it is removed.

Example: Formation Agents

Formation situation agents are used to force groups
of agents to march in formation through crowds or
open spaces. In many regards they are a special case of
group agents: they utilize steering, but ws, (Equation (1))
becomes 1, making the velocity correction a substitution
for the agent’s preferred velocity. Formation agents also
provide additional functionality such as re-forming and
rotation. These abilities are controlled by a set of param-
eters including shape, rigidity, and agent participation
which are defined by the user.

In order to enforce their group’s shape the boldness
parameters of all the group members in a formation
agent are increased. In crowds, this encourages other
agents to avoid the agents maintaining the formation.
This tendency is further enhanced by group situation
agents steering to avoid formation agents as though they
were extremely bold group agents. In return, formation
agents treat group agents as timid formation agents. So
on both large and fine scales, agents are encouraged to
let formations pass with relative ease. The correction
velocity (Equation (1)) formation agents apply to their
members is the sum of two terms,

chorr = ﬁsa + ﬁ(ﬁsa + 8_:1 - Z7a) (3)

where §, is the offset from the center of the formation
agent to the agent’s position in the formation. As the
orientation of the formation agent rotates, this offset
is rotated as well, which allows formations to rotate
as they turn. However, if static turning is desired, this
rotation can be omitted. B8 is a scalar between (0, 1]
which controls how rigidly each member of the group
holds their position. When g = 1 group members always
attempt to reach their correct formation position exactly.
When B is a lesser value members only attempt to
move a fraction of the way to their formation position.
Lowering this parameter essentially allows agents to
take their time when restoring the formation. As in
Algorithm 1, ps, and p, represent the positions of the
situation agent and agent respectively.

Formation situation agents have the ability to break
apart and re-form their formations. To break formation,

the formation agent simply stops modifying the bold-
ness and preferred velocities of its members. At that
point the members behave as standard agents. However,
re-forming is a more intricate process. To account for the
possibility that the formation members have drastically
re-ordered themselves, the formation agent re-assigns
the positions of the formation. This is done by rotating
the positions of the members into a coordinate system
aligned with the orientation of the formation agent and
centered at its position. Both the transformed member
positions and the offsets are then sorted by y-value (the x-
valueis used to break ties) and paired by order. The result
is that nearby member agents are assigned positions near
the front of the formation and further agents are given
positions in the back. This re-ordering takes place exactly
once when a formation agent musters its members. After
that the individual members use their standard behav-
iors to reach their positions within the offset. To facilitate
this, upon re-forming the formation agent slows down
until all its members have gotten sufficiently close to their
positions within the formation. After the formation has
re-formed the formation situation agent returns to nor-
mal speed. This is how formation agents move through a
narrow passage: they break the formation when entering
it, both them and their member agents pass through,
and then they re-form when exiting the passage.

Results

Although the notion of situation agents is compatible
with many crowd simulation frameworks, for this
paper we focus on its application to RVO-based steering.
Recent studies' have shown that variants of this method
of agent steering can operate at high frame rates for
large numbers of agents. However, at present the RVO
framework has no way for agents to coordinate special-
ized group interactions. Steering behavior is calculated
independently for each agent, which can lead to unde-
sired behaviors in certain scenarios. Situation agents are
a well-suited solution to this coordination issue, making
RVO an ideal steering algorithm to test them with.

The following sections outline the results of the three
types of situation agents presented previously as they
apply to RVO steering. During testing we based our code
on RVO library 1.1"* and used the A* algorithm?® as our
path planner. Steersuite 1.02!® was used for visualiza-
tion and as an inspiration for test cases. The examples
presented in this section are not exhaustive. Additional
scenarios are included in the supplementary video.

Copyright © 2010John Wiley & Sons, Ltd.

Comp. Anim. Virtual Worlds 2010; 21: 267-276
DOI: 10.1002/ cav

M. SCHUERMAN ET AL

computer animation
& virtual worlds

“, -

Figure 1. (Left to right) Agents are placed in random locations on both sides of a narrow doorway. Their goals are to cross to the

other side, as initially indicated by the arrow on each agent. The top sequence shows RVO agents attempting this and the resulting

deadlock. In the bottom sequence a deadlock agent (large and in red) has been placed at the doorway in the same scenario and

deadlocks are avoided. The upper sequence spans a period four times longer than the lower sequence due to agent shoving, which
deadlock agents also eliminate.

Avoiding Deadlocks

Figure 1 shows a narrow doorway with two sets of agents
arriving at similar times. Using standard RVO agents a
deadlock occurs. By placing a deadlock situation agent
at the center of the narrow doorway the deadlock can be
avoided. The boldness parameters and preferred veloci-
ties of the agents moving right are modified to encourage
them to move to the side while the agents moving left
pass. Once the agents have passed the original parame-
ters of the remaining agents are restored.

Using deadlock agents eliminates the threat of dead-
locks in many situations. They also give the artist or
programmer flexibility: agents can line up on either side
of the wall and their aggressiveness can be calibrated.
Also, because this behavior is simple and pre-defined, it
does not significantly reduce performance as cooperative
planning schemes might.

(a) (b)

Group Behaviors

RVO agents do produce lanes in the scenario of two
small groups passing through each other shown in top
sequence of images in Figure 3. However, these lanes of
agents are rather thin and interleaved. Often it would
be desirable for the groups to remain coherent and steer
around each other completely. By applying group agents
using the automated process described earlier we see
this result in the lower sequence of images in Figure 3.
The same behavior is evident when many group agents
(the large agents in blue) are assigned to large groups as
shown in Figure 2a.

Group agents can resolve deadlocks as well. Consider
the case of two groups of two agents walking toward
opposite ends of a hallway that is wide enough for two
agents to walk abreast. If a group agent is placed on each
pair it encourages the agents to form lanes which allows

Figure 2. Example situation agents. (a) Group agents. (b) A formation agent passing through group agents. (c) A hierarchy of
formation agents.

©000

Copyright © 2010John Wiley & Sons, Ltd.

Comp. Anim. Virtual Worlds 2010; 21: 267-276
DOI: 10.1002/ cav

computer animation
& virtual worlds SITUATION AGENTS

Figure 3. (Left to right) Two groups of six agents each are initially placed opposite each other with opposing trajectories. The

top sequence shows the behavior of typical RVO agents. The bottom sequence shows the same groups of agents, but each has been

assigned a group agent (large and in blue) using our automatic placement algorithm. The groups now steer as aggregates around
each other.

=
£

Figure 4. (Left to right) Two groups of two agents walking toward each other abreast in a narrow hallway. The group agents
(large and in blue) assigned to each pair steer around each other and as a result encourage lane formation. This allows the pairs
to pass each other smoothly.

the groups to cross as shown in Figure 4. However, with-
out such encouragement agents can end up deadlocked,
as we have observed using standard RVO agents. Our
technique works for larger groups of agents in the same
hallway scenario as well.

Formations

Figure 5 illustrates a user-specified triangle formation.
As the formation moves through a large group, all group

agents steer away from the formation agent. On a finer
level the individual RVO agents also steer away from the
agents within the formation. As a result the formation
can maintain its shape. Exactly how well it maintains
its shape can be controlled by parameters. In the same
scenario, if we reduce g by half the group becomes less
rigid and the sides begin to tuck behind the main portion
of the triangle as seen in Figure 2b.

If the formation cannot fit through a passage, it must
detect that and act accordingly. Once the formation agent

Figure 5. (Left to right) A formation agent (large, moving upward, and in green) regulates a group of agents moving through

a crowd. The group agents (large, moving downward, and in blue) steer away from the formation agent, while individual agents

steer away from the individual agents of the formation on a finer level. Due to this hierarchy, collisions between group agents and
the formation agent do not disturb the formation.

©000

Copyright © 2010John Wiley & Sons, Ltd. 273 Comp. Anim. Virtual Worlds 2010; 21: 267-276
DOI: 10.1002/cav

M. SCHUERMAN ET AL

computer animation
& virtual worlds

Figure 6. (Left to right) The formation agent (large and in green) detects that it intersects an obstacle and stops enforcing the
formation. Both it and the agents in its formation proceed through the narrow passage. Once the formation agent no longer detects
an intersection with an obstacle, it begins rebuilding the formation.

detects an obstacle within its range (Figure 6) it allows the
member agents to break form. The agents move through
the passage individually and re-form once the formation
agent no longer intersects with the walls of the passage.

Formation agents are particularly useful for RVO
steering because RVOs have no built-in mechanism for
enforcing rigid group movement. However, even in
frameworks with such features, formation agents are
useful for their ability to determine when marching in
formation is feasible. They are also useful because they
allow all the agents within the formation to be treated
as a single agent. This allows for hierarchical structures
such as the formation of formations shown in Figure 2c.
Note that such hierarchy is a general property of situation
agents, and therefore possible between agent classes as
well: a traffic agent influencing formation agents would
be an equally valid example.

Conclusions and Future
Work

We have presented an approach for augmenting steering
frameworks with externalized hierarchical steering logic.
Our approach reduces the complexity of standard agents
by externalizing the specialized steering logic required
for some situations to a new class of agents called situ-
ation agents. These agents exist solely to influence the
agents within their vicinity by modifying their preferred
velocities and boldness parameters (other parameters
can be modified as well in the general case). Through this
influence situation agents orchestrate other agents to suc-
cessfully navigate difficult situations. Additionally, the
hierarchy that situation agents provide often enhances
the elegance and simplicity of the solutions they facili-
tate. Examples of this were given for scenarios involving
possible deadlocks, coherent group behavior, and enforc-
ing marching formations.

However, the true strength of situation agents is not
the specific behaviors demonstrated in this paper, but
the modularity they provide. Since the logic to deal
with challenging scenarios has been externalized, stan-
dard agents can use much simpler steering algorithms,
enhancing both performance and maintainability. The
specialized steering algorithms also benefit from this
separation. Encapsulating them into individual situation
agents provides a clean interface for integrating them
into frameworks and provides the separation required
for parallel development. Also, once developed, artists
have an intuitive way to select when, where, and which
algorithm to use. For example References [17-19] provide
more intricate methods of group management than the
current group agent. Situation agents could be made to
implement each of those algorithms and artists could use
them as appropriate. None of the existing standard or sit-
uation agents would require modification, the only thing
required would be new situation agents. This would
not be feasible with traditional informed environment
approaches. It is only because of the additional flexibil-
ity of allowing specialized behaviors to move as agents
that such encapsulation and separation is possible.

For future work we would like to more thoroughly
test the concept of situation agents using steering frame-
works other than RVO. Also, more types of situation
agents should be explored. In the long term, this method
could be added to game engines and animation suites
to aid artists and developers in producing realistic
crowds.

References

1. Farenc N, Musse SR, Schweiss E, et al. One step towards
virtual human management for urban environment simu-
lation. Proceedings of the ECAI Workshop on Intelligent User
Interfaces, 1998.

Copyright © 2010John Wiley & Sons, Ltd.

Comp. Anim. Virtual Worlds 2010; 21: 267-276
DOI: 10.1002/ cav

computer animation
& virtual worlds

SITUATION AGENTS

2. Tecchia F, Loscos C, Conroy R, Chrysanthou Y. Agent
behaviour simulator (abs): a platform for urban behaviour
development. GTEC, 2001; 17-21.

3. Sung M, Gleicher M, Chenney S. Scalable behaviors for
crowd simulation. Computer Graphics Forum 2004; 23(10):
519-528.

4. Reynolds CW. Flocks, herds and schools: a distributed
behavioral model. SIGGRAPH, 1987; 25-34.

5. Badler N. Virtual Crowds: Methods, Simulation, and Control
(Synthesis Lectures on Computer Graphics and Animation). Mor-
gan and Claypool Publishers: San Rafael, CA 94901, USA,
2008.

6. Treuille A, Cooper S, Popovi¢ Z. Continuum crowds. ACM
Transactions on Graphics 2006; 25(3): 1160-1168.

7. Helbing D, Molnar P. Social force model for pedestrian
dynamics. Physical Review E 1995; 51: 4282.

8. Fiorini P, Shillert Z. Motion planning in dynamic envi-
ronments using velocity obstacles. International Journal of
Robotics Research 1998; 17: 760-772.

9. Paris S, Pettre J, Donikian S. Pedestrian reactive navigation
for crowd simulation: a predictive approach. EUROGRAPH-
ICS, 2007; 665-674.

10. Shao W, Terzopoulos D. Autonomous pedestrians. SCA,
2005; 19-28.

11. Yeh H, Curtis S, Patil S, van den Berg J, Manocha D, Lin M.
Composite agents. SCA, 2008; 39—48.

12. van den Berg], Lin M, Manocha D. Reciprocal velocity
obstacles for real-time multi-agent navigation. ICRA, 2008;
1928-1935.

13. Guy SJ, Chhugani J, Kim C, et al. Clearpath: highly parallel
collision avoidance for multi-agent simulation. SCA, 2009;
177-187.

14. van den Berg]J. RVO library 1.1, September 2009.
www.cs.unc.edu/~geom/ RVO/Library/

15. HartPE, Nilsson NJ, Raphael B. A formal basis for the heuris-
tic determination of minimum cost paths. IEE Transactions
on Systems Science and Cybernetics 1968; 4(2): 100-107.

16. Singh S. Steersuite 1.02, September 2009. www.magix.ucla.
edu/steersuite/

17. Kwon T, Lee KH, Lee], Takahashi S. Group motion editing.
ACM Transactions on Graphics 2008; 27(3): 1-8.

18. Lai Y-C, Chenney S, Fan S. Group motion graphs. SCA, 2005;
281-290.

19. Kamphuis A, Overmars MH. Motion planning for coherent
groups of entities. ICRA. In Proceedings of IEEE ICRA, 2003;
3815-3822.

Authors’ biographies:

Matthew Schuerman completed degrees in Physics and
the Mathematics of Computer Science at the University of

California, San Diego. He also recently received his M.S.
in Computer Science from the University of California,
Los Angeles. His primary research is crowd simulation.

Shawn Singh is currently working on his Ph.D. at the
University of California, Los Angeles. He received his
M.S. in Computer Science from the University of South-
ern California. His research includes real-time photon
mapping, novel forms of computation, and robust virtual
pedestrian steering behaviors.

Mubbasir Kapadia received his B.E. in Computer Engi-
neering in 2007 from University of Mumbai, India. He
is currently working on his Ph.D. at the University of
California, Los Angeles. His current research is applying
egocentric approaches to pedestrian simulation and the
evaluation of agent steering behaviors.

-

Petros Faloutsos is an Assistant Professor at the Depart-
ment of Computer Science at the University of California
at Los Angeles. He received his Ph.D. degree (2002) and
his M.Sc. degree in Computer Science from the Univer-
sity of Toronto, Canada and his B.Eng. degree in Electrical
Engineering from the National Technical University of
Athens, Greece. He is the founder and the director of the
graphics lab at the Department of Computer Science at
UCLA. Thelab, called MAGIX (Modeling Animation and

Copyright © 2010John Wiley & Sons, Ltd.

Comp. Anim. Virtual Worlds 2010; 21: 267-276
DOI: 10.1002/ cav

computer animation
M. SCHUERMAN ET AL & virtual worlds

GrafIX), performs state of the art research in all aspects is a member of the Editorial Board of the Journal of the
of graphics, focusing on virtual actors, virtual reality, Visual Computer and has served as a Program Co-Chair
physics-based animation and motor control. He is also for the 2005 ACM SIGGRAPH/Eurographics Symposium on
interested in computer networks and he has co-authored Computer Animation. He is a member of the ACM and the

a highly cited paper on the topology of the Internet. He Technical Chamber of Greece.

Copyright © 2010John Wiley & Sons, Ltd. 276 Comp. Anim. Virtual Worlds 2010; 21: 267-276
DOI: 10.1002/ cav

