
Technical Report: 100041
Multi-Agent Behavior Specification and Generation

(a) (b) (c) (d)

Figure 1: Snapshots of the city simulation authored using our framework: (a) Actorsqueue up at a hot dog stand while the vendors talk to
one another. In the meantime, the thief lies in the shadows waiting for an opportunity to steal the money from the stand. (b) Cars giving right
of way to pedestrians. (c) Cautious actors run to a place of safety in the event of an accident. (e) Firefighters extinguish the fire while daring
actors look on.

Abstract

There has been growing academic and industry interest in the be-
havioral animation of autonomous actors in virtual worlds. How-
ever, it remains a considerable challenge to automatically generate
complicated interactions between multiple actors in a customizable
way with minimal user specification.

In this paper, we propose a behavior authoring framework which
provides the user with complete control over the domain of the sys-
tem: the state space, action space and cost of executing actions.
Actors are specialized usingeffectandcostmodifiers – which mod-
ify existing action definitions, andconstraintswhich prune action
choices in a state-dependent manner.Behaviorsare used to define
goals and objective functions for an actor. Actors having common
or conflicting goals are grouped together to form acomposite do-
main, and a heuristic search technique is used to generate compli-
cated multi-actor behaviors. Using our method, users can work at
any level of abstraction – from specifying scripted sequences of ac-
tions, goals, constraints on trajectories of one or more agents, to
specifying high-level motivations for an entire scene. We demon-
strate the effectiveness of our framework by authoring and gener-
ating a city simulation involving multiple pedestrians and vehicles
that interact with one another to produce complex multi-actor be-
haviors.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence—Intelligent Agents

Keywords: crowds, high-level behaviors, coordination, authoring

1 Introduction

Multi-actor simulation is a critical component of cinematic content
creation, disaster and security simulation, and interactive entertain-
ment. One key challenge is providing an appropriate interface to
allow the user toauthor the behavior of autonomous actors that
populate the simulated environment. For example, a user may want
to author massive armies in movies, autonomous actors interact-
ing in games, a panicked crowd in urban simulations, etc. Author-
ing is often a bottleneck in a production process, requiring the au-
thor to either manually script every detail in an inflexible way or
to provide a higher level description that lacks appropriate control
to ensure correct or interesting behavior. The challenge is to pro-
vide a method of authoring that is intuitive, simple, automatic, yet
has enough “expressive power” to control details at the appropriate
level of abstraction.

There are two components to authoring behaviors: (1) behavior
specification, and (2) behavior generation. A behavior is speci-
fied as a scripted sequence of actions, desired goal state, finite state
machines or using complex cognitive models. Then, a behavior
generation module computes an action trajectory for all actors cor-
responding to the desired behavior(s). There exists a trade-off be-
tween specification and generation of behaviors. Detailed specifi-
cation of behaviors (e.g. scripted sequences of actions) require a
simple generation module, while abstract specifications (e.g. high-
level motivations for actors) require more complexity and automa-
tion in behavior generation. In general, these methods suffer from
the following disadvantages:

• Flexibility . Scripted behaviors are dependent on the current
configuration of the actors and the environment and do not gen-
eralize easily to different scenarios.

• Complexity. Authoring complicated interactions between mul-
tiple actors becomes intractable in current approaches. For ex-
ample, describing the collaboration of two actors to pick-pocket
a victim could vary drastically based on the properties of the
environment, the victim, or presence of other actors such as a
police officer.

• Effort . There is no clear way of directing the trajectory of the
story without defining behaviors for every participating actor.
For example, a user may wish to specify that two vehicles meet
with an accident without having to script the series of events
that precede and follow the accident.

To our knowledge, no prior work provides a flexible means of spec-

ification with little effort, while generating complex interactions
between multiple actors. The far reaching goal that still remains
a considerable challenge is this: to provide an animator with the
ability to easily orchestrate complicated “stories” between multi-
ple interacting actors that can be easily customized and is portable
across scenarios, with minimal user specification.

In this paper, we provide the user with complete control over the
domain of the system: the state space, action space and costs of ex-
ecuting an action. The environment and actors are described with
state metricsthat are affected by actions. The costs of actions are
characterized by generalcost metrics. Metrics and actions are ex-
tensible: users can create additional metrics that better interpret the
simulation by applying operators on existing metrics, and actions as
metric modifiers. Existing actor definitions can be specialized us-
ing modifiers that modify theeffectsandcostsof actions based on
the current state.Constraintsare used to enforce requirements on
actors or on the story (e.g. two cars must collide during the simula-
tion). Behaviorsare specified as a desired goal state and an objec-
tive function that an actor or group of actors must optimize. Actors
having common or conflicting goals, are grouped together to form
acomposite domainand a heuristic search technique is used to plan
in this domain to generate complicated multi-actor behaviors.

The main contribution of this paper is to combine the expressive
nature of actions, action specializations, constraints and behav-
iors (specification atoms) along with the automation of a heuristic
search planner that works in the composite space of interacting ac-
tors. The intended audience for this framework is two-fold: domain
specialists can define metrics and actions for a given scenario (state
and action space), while end-users can specialize existing action
definitions to add variation and purpose to their own simulation.
The planner allows complex behaviors for multiple interacting ac-
tors to be generated with minimal user specification. Our method
has the following benefits:

• Modular and Natural Specification: Domain specialists de-
fine the state and action space for different scenarios while end-
users can specialize and constrain existing definitions to add
variation and purpose to their simulation. Specializations and
constraints can focus on different levels of abstraction and can
be as general or specific as necessary. Behaviors are specified
as goals and objectives for actors that are triggered based on
their current state.

• Cooperative and Competitive Planning: Complicated inter-
actions between multiple actors can be authored by simply
specifying common or contradicting goals for actors in the sce-
nario. Our method automatically clusters actors that have co-
operative or conflicting goals to define acompositestate and
action space. This avoids the complexity of modeling commu-
nication between actors or the need for explicit scripting of co-
operation schemes in agents. Collaborative behaviors arise as
a solution found by the planner which minimizes the combined
cost of actions of all agents in the composite space.

• High-Level Story Specification: Constraints can be used to
enforce requirements at various points in the simulation with-
out explicitly scripting preceeding and succeeding events. This
allows users to make incremental changes in the specification
in an isolated manner.

2 Related Work

Behavioral animation in crowds has been studied extensively from
many different perspectives. A comprehensive survey of the most
representative work can be found in [Badler 2008]. There are
two components to authoring behaviors: (1) behavior specifica-
tion, and (2) behavior generation. Using a specification interface

(e.g., CML [Funge et al. 1999], BML [Vilhj́almsson et al. 2007],
STRIPS [Fikes and Nilsson 1971], TAEMS [Horling et al. 1999]),
an author defines the state and action spaces of the actors in a sce-
nario. Behavior specification can be classified as follows:

Scripted action sequences.This method provides complete con-
trol to the animators in defining behaviors as pre-defined sequences
of actions. HAP [Loyall 1997] provides a language for express-
ing behaviors as sequences of primitive actions. [Loyall et al.
2004] builds on this work and proposes a motion synthesis sys-
tem that combines motion data with authored procedures. [Mateas
2002] focuses on the integration of behavioral agents in a global
story, in an effort to build interactive, dramatic worlds. The work
in [Vilhj álmsson et al. 2007] provides a framework for generating
behaviors in conversational agents. These approaches require the
user to hand-script each behavior and small changes often require
far-reaching modifications of monolithic scripts.

Personalities and goals.Most crowd approaches (e.g. [Sung et al.
2004; Braun et al. 2003]) use goals and parameters to add hetero-
geneity to their simulations. The work in [Durupinar et al. 2008]
maps parameters to personality traits and examine the emergent be-
haviors in crowds. The work in [Bindiganavale et al. 2000] uses
natural language instructions to define goals forsmartavatars.

Behavior State machines.Behaviors are defined as rules which
govern how actors act based on certain conditions. Improv [Perlin
and Goldberg 1996] and LIVE [Menou 2001] use nested script-
ing to control the motion of a character. SmartBody [Thiebaux
et al. 2008] employs a hierarchical animation controller for behav-
ioral animation in conversational agents. Massive [Massive Soft-
ware Inc. 2010] is a commercially available system which allows
users to create probabilistic state machines for defining agent be-
haviors. These sytems arereactivein nature: i.e. they produce pre-
defined behaviors corresponding to the current situation and are not
equipped to generate complicated agent interactions that pan out
over the course of an entire simulation.

Cognitive Models. The work in [Funge et al. 1999] proposes a
cognitive model to govern what a character knows, how that knowl-
edge is acquired and how it can be used to plan actions. Artifical life
approaches [Shao and Terzopoulos 2005] model motor, perceptual,
behavioral, and cognitive components for an autonomous pedes-
trian. Decision networks are used in [Yu and Terzopoulos 2007;
Yu 2007] for complex cognitive modeling subject to uncertainty.
[Blumberg 1997] propose an ethologically inspired model of action
selection and learning for behavioral animation. However, these
models cannot be easily designed and modified by non-experts.

Behavior generation depends on the method of user specification.
These methods of authoring represent different tradeoffs between
the ease of user specification and the autonomy of behavior gener-
ation. Manual approaches (e.g. [Perlin and Goldberg 1996; Menou
2001]) provide fine-grained control over agent behaviors at the ex-
pense of generalization and automation. Automated approaches
(e.g. [Yu and Terzopoulos 2007; Lau and Kuffner 2005; Fikes and
Nilsson 1971; Erol et al. 1994]) generate state-dependent action
sequences that lead autonomous actors towards their user-defined
goals. In these approaches, the behavior generation task is more
complicated, and details may not be easy to control.

The use of domain-independent planners [Fikes and Nilsson 1971;
Blum and Furst 1995; Erol et al. 1994] is a promising direction for
automated behavior generation. The automatic derivation of heuris-
tic estimators [Bonet and Geffner 2001] to guide the search is a pop-
ular technique in domain-independent planning, and is the method
of choice in this paper. Planning approaches provide automation
at the expense of computation. Also, collaboration among agents
requires the overhead of a centralized planner or the modeling of

agent communication. Hence, current systems [Funge et al. 1999;
Decugis and Ferber 1998] using planners for behavior generation
are restricted to simple problem domains (small state and action
space) with a small number of agents exhibiting limited interaction.

Our method. Our method strikes a happy medium between flex-
ibility of specification and automation of behavior generation by
allowing the users to work at different levels of abstraction. Users
can control fine details in their simulation by designing the state
and action space of actors or simply direct the high-level details
by specializing existing actor definitions. Our search method gen-
erates complicated multi-actor interactions without the need of an
expensive global optimization for all actors in the scenario.

The rest of this document is organized as follows: Section 3
presents the constructs for domain specification and specialization.
Section 4 describes the underlying framework for behavior genera-
tion. In Section 5, we demonstrate the efficacy of our technique by
authoring a complicated city simulation involving pedestrians and
vehicles.

3 Behavior Specification

Our framework allows the author to define the state space, action
space and action costs for actors in the scene. Actors are specialized
usingeffect and cost modifiers– which modify existing action def-
initions, andconstraintswhich prune action choices depending on
the state of the actor.Behaviorsare used to define the goals and ob-
jective functions for an actor. Section 3.1 defines the method of do-
main specification. Specializing actors is described in Section 3.2,
while Section 3.3 outlines the method of specifying behaviors.

3.1 Domain specification

Domain specification is the lowest level of abstraction at which a
user can work to author behaviors. It entails defining the state
space, the action space and, costs of executing actions for actors
in a scene. An actor is an entity which has a state and can affect the
state of itself or other actors by executing actions. Different actors
in the same scenario may have different domain specifications. For
example, a traditional actor can be defined to simulate pedestrians
in a virtual environment, while the environment can be defined as
an actor which can be used to trigger global events such as a natural
disaster that would affect the state of other actors in the scenario.

State Space.We represent the state space of an actor usingmet-
rics – physical or abstract properties of an actor that are affected
by the execution of actions. Users can extend metrics by ap-
plying operators on existing metrics to provide an intuitive un-
derstanding of the properties of the simulation. For example,
distance to target is derived from the positions of the ac-
tor and a target actor which is used for specifying behaviors such
asfollow or seek. Let {mi} define the space of metrics for all
actors in the scenario.

Costs.Costs are a numerical measure of executing an action. Dif-
ferent actions can affect different cost metrics by different amounts.
Examples of cost metrics include distance, energy, etc. Let{ci} de-
fine the space of costs.

Action Space.The action space of an actor is a set of actions which
it can perform in any given state. Actions affect one or more met-
rics of an actor. An action has the following properties: (1) pre-
conditions which determine if an action is possible in a given state,
(2) the effect of the action on the state of the actor as well as target
actors and, (3) the cost of executing an action.

Action actionName(parameters) {

Precondition: conditions on elements of{mi} or {ci}
Effect: effects on elements of{mi}
Cost Effect: effects on elements of{ci}

}

3.2 Specialization

In our method, we focus on the re-use of existing actor defini-
tions across different scenarios by specializing actors in a state-
dependent manner without modifying the original definition. Our
intent is that an author will spend a majority of his time at this level
of abstraction where he can specify and generate vastly different,
purposeful simulations in an intuitive manner with minimal specifi-
cation. We provide three methods of specializing actors: (1) effect
modifiers, (2) cost modifiers and, (3) constraints.

Effect Modifiers: Users can specialize the effect of an action de-
pending on the state of the actor and the environment. For example,
an effect modifier can be placed on elderly actors to reduce their
normal speed of movement. Similarly, a reckless vehicle can be au-
thored by reducing its collision radius, not follow signals and move
at greater speeds.

EffectModifier modifierName{
Precondition: conditions on elements of{mi} or {ci}
Effect: effects on elements of{ci}

}

Cost Modifiers: Just as effect modifiers specialize the effect of an
action, cost modifiers specialize the cost of an action depending on
the state of the actor and the environment. They indicate what ac-
tions are in an actor’s best interest at a particular state. For example,
a cautious actor can be authored by increasing the cost of actions
that may place the actor in danger (e.g. running a yellow light) or
keep an actor in danger (e.g. remaining in a burning building). A
daring actor on the other hand, could be authored by lowering the
cost of actions that may place the actor in danger. In both of these
examples, the notion ofdangerwould be a user specified metric in
the state space of these actors.

CostModifier modifierName{
Precondition: conditions on elements of{mi} or {ci}
Cost Effect: effects on elements of{ci}

}

Constraints: Constraints are a powerful and general method for
enforcing strict requirements on actors in a scenario. Constraints
on a single actor typically restrict the action choices of an actor
in a particular state. For example, constraints can be used to pre-
vent pedestrians from walking on the road and obey traffic signals.
Constraints on multiple actors can be used to author specific events
(e.g. two cars must collide), generate complex interactions between
actors and, direct the high-level story of the simulation.

Constraint modifierName{
Precondition: conditions on elements of{mi} or {ci}
Constraint: conditions on elements of{mi}

}

3.3 Behavior State Machine Specification

A particular behavior state defines the current goal and objective
function of an actor. The goal of an actor is a desired state that the
actor must reach, while the objective function is a weighted sum of
costs that the actor must optimize. The objective functiono of an
actor is specified by setting the weights{wi} of the different cost

metrics{ci}, and is defined aso = min(
P

i
wi ·ci). A user can de-

fine multiple behaviors for an actor which are activated depending
on the current state.

Behavior behaviorName{
Precondition: conditions on elements of{mi}
Goal: conditions on elements of{mi}
Objective Function: values of{wi}

}

4 Behavior Generation

The previous section describes the specification of the problem do-
main (state space, action space, action-costs and, modifiers) and
problem definition (start state and behaviors) for all actors. The en-
tire problem domain is divided into composite domains of actors
having common or contradicting goals. A heuristic search tech-
nique is used to independently optimize the objectives of all actors
in each composite domain.

4.1 Behavior Generation Algorithm

Actors with dependent goals or constraints enforcing their interac-
tion are grouped together into a composite domain, forming a set
of independent domains. For each of these domains, a heuristic
search technique plans a trajectory of actions for all actors in that
domain that satisfies the composite goal while optimizing the ob-
jective of each actor. The result of each search is combined into a
global plan which is executed to generate the resulting simulation.
An algorithm outlining our framework is described below:

1. Define Actors,Aci = 〈Si, Ai, Ci, Bi〉, whereSi is the state
space,Ai is the action space,Ci is the set of constraints and
modifiers, andBi is the set of behaviors defined for actori.

2. Determine Composite Domains,CDj = 〈Sc
j , Ac

j , C
c
j , Bc

j 〉,
whereSc

j = {S1 × S2 × ... Sn} is the composite state space,
Ac

j =
Sn

i=1
{Ai} is the composite action space,Cc

i = {Ci}
is the set of specializations, andBc

j = {Bi} is the set of
behaviors defined for all actorsi = 1 to n in the composite
domainCDj .

3. For each Composite Domain,CDj

(a) Define Search Domain,Σ = (Sc, Ac, Cc).
(b) Determine initial state in the composite space of all

agents,s0 =
Sn

i=1
s0

i

(c) Determine active behaviors,bi for each actor,i in com-
posite domain,CDj . The active behavior for each actor
determines the goal,gi and the objective functionoi.

(d) The composite goal,g is the logical combination of
the goals,{gi} for all actors in the composite domain.
Common goals are combined using an∧ operator, indi-
cating that all actors must satisfy their goal. Contradict-
ing goals are combined using an∨ operator, indicating
that any one of the actors must satisfy their goal.

(e) If no behavior is active for actors,Return.
(f) Solve for sequence of actionsπ by performing a search,

π = Search(Σ, s0, g, {oi}), whereΣ is the search do-
main,s0 is the composite start state,g is the composite
goal, and{oi} are the objective functions for each actor.

4. Combine plans for all domains,Π = π1 ∪ π2 ∪ ...πn.

5. Execute Global Plan,Π.

6. Determine new states of all actors.

7. Repeat Steps 2-6.

4.2 Composite Search Domain and Problem Definition

The search domain,Σ comprises the state spaceS, the action space
A, and the set of specializationsC that are defined for all the ac-
tors in the composite domain (Step 3(a)). Given a search domain
Σ, a problem definition is specified as(Σ, s0, g, {oi}) wheres0 is
the composite start state,g is the composite goal and{oi} is the
set of objective functions for all actors in the composite space. The
composite start state,s0 is the cartesian product of the initial states,
{si} of each actor (Step 3(b)). The current behavior of all actors
in the composite space is determined to obtain the goal and objec-
tive functions for each actor (Step 3(c)). The composite goal,g is
the logical combination of the goals for each individual actor (Step
3(d)). Common goals are combined using an∧ logical operator and
are used to generate collaborative behaviors. Contradicting goals
are combined using an∨ logical operator and are used to simulate
competitive behaviors. A composite goal can thus be one of the
following:

• A single objective for a single actor (e.g. get a hot dog).
• Multiple objectives for a single actor (e.g get a hot dog and meet

a friend at the park).
• Common objectives for a group of actors (e.g two actors col-

laborating to lift a heavy load).
• Conflicting objectives between actors (e.g. the objective of the

thief is to steal from the victim while the objective of the victim
is to protect his money).

• Combination of common and conflicting objectives (e.g. two
actors collaborating to corner a third actor).

• One or more desired events during the course of the behavior
(e.g. a thief must be caught).

The heuristic search planner solves for a sequence of actions for all
actors in the composite domain which optimizes theindividual ob-
jective functions of each actor while satisfying thecompositegoal.
Since our technique works in the composite space of multiple ac-
tors, complicated interactions between multiple actors that may be
collaborating to satisfy a common goal or competing with one an-
other can be generated. However, actions for an actor are chosen to
optimize its individual objective function. This ensures that actors
always do what is in their best interest in “trying” to achieve their
goals even if the resulting simulation does not meet their individual
goal.

4.3 Heuristic Search Algorithm

Algorithm 1 illustrates the working of the search process. The in-
put is the problem definition,P = (Σ, s0, g, {oi}) and the output
is a sequence of actions for all actors in the composite domain that
meets the composite goal,g while trying to optimize the individual
objective functions,{oi} of all actor in the group. An actor always
decides an action to perform that meets its individual objectives.
However, the search process works in the composite space of mul-
tiple actors and chooses a trajectory of actions for all actors which
meets the composite goal. The output of the searchπ, is the se-
quence of actions which meets the desired behavior for all actors in
the composite space.

Even though actors that belong to one group do not simultaneously
plan with other actor groups, the search always considers the global
state space for all actors in the scenario while generating a valid
action trajectory. Hence, the action trajectories generated for actors
in one group can be overlayed on top of the trajectories of other
actors whose goals and objectives are independent of their actions
to generate a complete simulation.

Composite Actions. A composite action is a set of overlapping
actions,{ai} chosen byall actors in the composite domain at a par-

ProcedureSearch(Σ, s0, g, {oi})
Input : Σ = The composite domain
Input : s0 = The composite start state
Input : g = The composite goal objective
Input : {oi} = The cost objectives for each actor in the composite space
Output : π = Action trajectories for all actors that meets desired behavior
OPEN = {s0}
CLOSED = {φ}
while OPEN 6= {φ} do

s = args min(f(s)) wheres ∈ OPEN
goalReached= isGoalConditionSatisfied(g, s)
if goalReachedthen

π = generatePath(g,CLOSED)
return π

end
OPEN = OPEN− {s}
CLOSED = CLOSED ∪ {s}
A = generateCompositeActions(s)
foreacha in A do

t = getTime(s)
s′ = simulate(s,a,t,t+1)
if g(s′) > g(s)+costFunction(s,a,t,t+1) then

g(s′) = g(s)+costFunction(s,a,t,t+1)
end
f(s′) = g(s′)+ heuristicFunction(s′)
OPEN = OPEN ∪ {s′}

end
end

Algorithm 1 : Heuristic Search Algorithm

ticular point of time. A composite action is said to beinvalid if
there exists an actor who is yet to choose an action. Thegener-
ateCompositeActions(s) function generates the set of all possible
composite actions at the current states, which is the cross product
of all actions possible ats, for each actor in the composite domain.
An action for a particular actor is said to be possible, if the fol-
lowing conditions are met: (1) the actor is currently not executing
an action, (2) the preconditions of the action are satisfied and, (3)
no constraints prohibit the action. Once all actors have chosen an
action that optimizes their individual objective functions, thesim-
ulate routine simulates the overlapping actions of all actors in the
group to progress by one time step.

Simulation of Composite Actions. A composite action is said to
be valid and ready to simulate if all the actors have a valid action
that they are executing or ready to execute. Actions for an actor
are modeled as functions of time and take a finite amount of time
to execute. Different actions can thus take differing amounts of
time. The explicit modeling of time in the action definition results
in overlapping actions, actions being partially executed (action fail-
ure) and actors choosing to perform new actions while other actors
are still performing their current action. For a valid transition, the
actions of all actors are simulated for one time step in a random
order. After the simulation of a composite action, an actor may find
itself in one of the following states:

• Success.The action is successfully completed and the actor
must chose a new action in the next time step.

• Executing. The action is partially executed at the end of the
simulation routine for that time step.

• Failure. The preconditions of the action are negated as a result
of the execution of actions of other actors. The action is said to
have failed and the actor must choose a new action.

Cost Function. Given a composite action,{ai} whereai is the ac-
tion chosen by actori in the composite domain, its cost is calculated
as follows:

costFunction(s, A, t, t + 1) =
X

i

oi({cj}) (1)

where{cj} are the values of the cost metrics for simulating action,
ai for agenti at state,s, from time,t to t+1, andoi is the objective
function of agenti.

Heuristic Function. The heuristic function is used to provide a
cost estimate from the current state to the goal state. Since our
system is domain independent (a user may specify any state space
and action space), manually defining heuristics for such a domain
becomes cumbersome. Even worse, the goal specification is not a
single state or set of states but a condition that must be satisfied.
The automatic derivation of heurisitics [Bonet and Geffner 2001]
has been extensively studied in task planning literature and is shown
to scale well for large problem domains. Our design of a heuristic
function is fairly straightforward and efficient. We first relax the
preconditions on the actions (all actions are deemed possible at any
given instant of time) and do a fast greedy search for a trajectory of
actions that takes the planner from the current state to the goal. The
sum of the cost of all actions is the heuristic,h for that particular
state,s.

5 City Simulation

We demonstrate the effectiveness of our framework by authoring a
car accident in a busy city street and observing the repercussions
of the event on other actors that are part of the simulation, such
as a thief and a hot dog salesman, whose behaviors are automati-
cally generated using our framework. Section 5.1 details the task
of specifying the state and action space of three generic actors (a
pedestrian, a vehicle and a traffic signal) and illustrate the ease with
which actors can be specialized to add variety and purpose to the
simulation. Section 5.2 discusses a variety of results that can be
achieved by changing the actor specializations or introducing con-
straints on the story line. The scripts used for defining actors, spe-
cializations and behaviors are outlined in Table 1.

5.1 Actor Specification and Specialization

Three generic actors, each having their own state and action space
are defined as follows:

• Pedestrians:Pedestrians have a position, orientation, speed of
movement and actor radius to model their movement in the en-
vironment. The action,Move (Script 1(a)) is defined to kine-
matically translate the actor and has an associated distance and
energy cost. In addition, pedestrians have the following abstract
metrics: hunger, safety, and amount of money. Actions such as
Eat are modeled to affect particular abstract metrics and have
an associated cost metric. Pedestrians are constrained to move
on the sidewalks, use the crossings when the signal turns green
(Script 1(c)) and are given high-level behaviors (e.g. satisfy
their hunger by getting a hot dog, meet a friend at the park).

• Vehicles:The state and action space of vehicles is defined sim-
ilarly to simulate their movement. In addition, they have a met-
ric damage which increases if a vehicle collides with another
vehicle. Vehicles are constrained to stay on the roads, give right
of way to pedestrians, and obey the traffic lights.

• Traffic Signals: A traffic signal represents an environment ac-
tor that models the simulation of the traffic signals at the in-
tersection. It has a single metricsignal state which is
the current state that the traffic signals at the intersection are
in. An action,ChangeTrafficSignal (Script 1(d)) deter-
mines the state of the traffic signal based upon the current sim-
ulation time. The pedestrian and the vehicles query the signal

(a) (b) (c) (d)

Figure 2: Interaction between thief and the vendors: (a) The thief steals money fromthe hot dog stand when the vendors walk away (because
of the accident). (b)-(d) The vendors collaboratively work together (Script 1(l)) to surround the thief in the alley and manage to catch him.

state in order to follow the traffic signals.

These generic actors are specialized as follows:

• Fire-fighters: Fire-fighter actors are specialized pedestrians
whose common goal is to extinguish any fires that may be
present in the city block. These actors have proportionally
lower weights for the safety metric – this implies that they can
move closer to a dangerous situation in perfoming their jobs.
Script 1 (j) outlines the behavior description for fire-fighters.

• Elderly: An elderly person is specialized by creating an effect
modifier which reduces their walking speed. In addition, the
elderly actor has an effect modifier which makes him follow his
grandson (Script 1(h)).

• Grandson: The objective of the grandson is to escort his grand-
father at all times and to keep him away from danger (e.g. car
accidents, oncoming traffic and other pedestrians). We achieve
this by introducing a simple script,ProtectGrandfatherB
which changes the objective function of the grandson to include
the safety cost metric of the grandfather as well.

• Cautious Actor: A cautious actor is authored by increasing the
cost of actions that may place him in danger (Script 1(e)).

• Daring Actor: A daring actor is authored by lowering the cost
of actions that may place him in danger (Script 1(f)). Here,
danger is a user-defined metric that is associated with each actor
in the scenario.

• Street Vendor: A street vendor is given the behavior of man-
ning his hot dog stand and ensuring that his money is not stolen.

• Thief: The goal of the thief actor is to make money while mini-
mizing his risk of getting caught (Script 1(n)). He has an action
Steal(Script 1(n)) which allows him to steal money from the
hot dog stand. In addition, a cost modifierRiskCostModifier
(Script 1 (o)) assigns a high cost to stealing in the presence of
other actors. He is therefore looking for an opportunity to steal
when the vendor is distracted.

• Reckless Vehicle:A reckless vehicle is modeled by introduc-
ing a high cost to moving at slower speeds and relaxing the
constraints of obeying traffic signals and collisions with other
vehicles. Scripts 1 (q) and (r) define the effect and cost modi-
fiers for a reckless vehicle.

5.2 Results

Populating the city block with pedestrians and vehicles injects life
into the simulation. Furthermore, actor specializations provide an
easy and intuitive way to add variety and purpose to the virtual
world. We observe pedestrians walking along the sidewalks in the
city in a goal-oriented manner (satisfying hunger by getting a hot
dog, going to the park to meet a friend, stopping to take a look
at objects of interest) while obeying constraints and modifications
(obey traffic lights, avoid collisions, stay off the streets etc).

In order to add drama to the simulation, we introduce constraints

on the trajectory of the entire simulation. First, we introduce a con-
straint,AccidentC(Script 1(p)), that an accident must happen (i.e.
two vehicles must collide). A simulation is generated where two
reckless vehicles collide with one another, resulting in a fire that
stops the traffic at the intersection (Figure 1(d)). Cautious pedestri-
ans who are near the accident run away to a safe distance in panic or
walk away calmly (depending on their specialization) while daring
actors approach the scene of the accident.

The car accident triggers the activation of the behaviors in the fire-
fighters who run to the location of the fires. They work together col-
laboratively to extinguish both fires (a result of the planner working
in the composite domain). Upon noticing the accident, the vendor
runs to a place of safety (high cost modifier on safety). As soon
as the thief notices that the vendor has left his stand, he slowly ap-
proaches the stand, steals the money and runs to a place of safety.

We vary the simulation result by introducing other specializations
or modifying existing ones. First, we introduce a partner to the
vendor, and balance the objective of the vendors to minimize safety
cost as well as the cost of being robbed as individuals. When the
accident happens, they run to a place of safety while keeping the
stand in eyesight. As soon as they see the thief stealing the money,
they both chase after him. However, the thief has a head-start and
runs away. Next, we change the objective of the vendor to minimize
the cost of both being robbed (common objective) and place a con-
straint that the thief must be caught. As a result, the two vendors
cooperate to corner the thief in an alley (Figures 2(a)-(d)).

Performance and implementation details.We demonstrate 106
actors in the city simulation, with 15 cars and 91 pedestrians. Based
on constraints, goal definitions and spatial locality, the following
composite domains are defined by the author: (1) 15 cars and 4 fire-
fighters, (2) two vendors and one thief, (3) old man and son and, (4)
generic pedestrians grouped together based on spatial locality. Di-
viding the problem domain into smaller composite domains reduces
the branching factor of the search by two orders of magnitude, re-
ducing an intractable search problem to smaller searches which can
be achieved at interactive frame rates. Note that the choice of com-
posite domains is arbitrary and in the hands of the author. For exam-
ple, authoring interactions between the old man and firemen would
necessitate the old man and firemen belonging to the same planning
domain. The plans for each of these domains is then overlayed to
form the complete solution. The performance results are provided
in Figure 3. The amortized performance of our behavior generation
framework for the results shown in the video is 0.02 seconds per
actor per second of simulation generated.

Characters are animated by transitioning between walk, run and
stop animations based on the speed of movement. This results in
artifacts with abrupt transitions from one animation state to another.
Note that the animation of the virtual humans is tangential to this
research which focuses on behavior authoring.

Number of actors 106
Number of composite domains 12

Max # of actors in a composite domain 19
Total generation time 219 seconds

Max generation time for one domain 76 seconds
Min generation time for one domain 8 seconds

Generation time per actor 2.06 seconds
Length of output simulation 95 seconds

Amortized time per actor per second 0.02 seconds

Figure 3: Performance Results.

6 Discussion

In this paper, we present a framework for generating complicated
behaviors between multiple interacting actors in a scenario. Our
specification interface allows authors to work at any level of ab-
straction: Domain specialists define the state and action space of
actors while end-users can re-use existing libraries of actor defini-
tions and specialize them for the purpose of their own simulation.
Actors with common or contradicting goals are grouped together
into a set of composite domains where the behavior of an actor in
one domain is independent of all actors in other domains. For each
of these domains, a heuristic search technique plans a trajectory of
actions for all actors to meet the desired behavior. This facilitates
the generation of complex multi-actor interactions without the need
of a centralized planner or the explicit modeling of communication
between actors. We author and demonstrate a simulation of more
than one hundred actors (pedestrians and vehicles) in a busy city
street and inject heterogeneity and drama into our simulation us-
ing specializations. With help from the community, we envision a
growing open-source library of actor definitions that can be re-used
to author your own simulations.

Limitations. Our framework currently does not work in real-time,
making it unsuitable for applications such as games. Possible ex-
tensions for the purpose of real-time behavior generation include
restricting the horizon of the search and using an anytime planner
which returns a valid solution at any point of time and incremen-
tally improves the solution with each iteration. Our heuristic search
method is currently serialized and not optimized for parallelization.
Also, the different plans for each composite domain need to be se-
rialized since choosing an action for each actor queries the global
state space of all actors in the scenario. We are currently investigat-
ing parallel search algorithms [Grama and Kumar 1993] in an effort
to achieve real-time performance.

References
BADLER, N. 2008. Virtual Crowds: Methods, Simulation, and Control

(Synthesis Lectures on Computer Graphics and Animation). Morgan and
Claypool.

BINDIGANAVALE , R., SCHULER, W., ALLBECK , J. M., BADLER, N. I.,
JOSHI, A. K., AND PALMER , M. 2000. Dynamically altering agent
behaviors using natural language instructions. InIn Autonomous Agents,
ACM Press, 293–300.

BLUM , A. L., AND FURST, M. L. 1995. Fast planning through planning
graph analysis.ARTIFICIAL INTELLIGENCE 90, 1, 1636–1642.

BLUMBERG, B. M. 1997. Old tricks, new dogs: ethology and interactive
creatures. PhD thesis. Supervisor-Maes, Pattie.

BONET, B., AND GEFFNER, H. 2001. Heuristic search planner 2.0.AI
Magazine 22, 3 (Fall), 77–80.

BRAUN, A., MUSSE, S. R., DE OLIVEIRA , L. P. L., AND BODMANN ,
B. E. J. 2003. Modeling individual behaviors in crowd simulation.
Computer Animation and Social Agents 0, 143.

DECUGIS, V., AND FERBER, J. 1998. Action selection in an autonomous
agent with a hierarchical distributed reactive planning architecture. In
AGENTS ’98: Proceedings of the second international conference on
Autonomous agents, ACM, New York, NY, USA, 354–361.

DURUPINAR, F., ALLBECK , J., PELECHANO, N., AND BADLER, N. 2008.
Creating crowd variation with the ocean personality model. In Proceed-
ings of AAMAS’08, International Foundation for Autonomous Agents
and Multiagent Systems, Richland, SC, 1217–1220.

EROL, K., HENDLER, J.,AND NAU , D. S. 1994. Htn planning: Complex-
ity and expressivity. InProceedings of AAAI, AAAI Press, 1123–1128.

FIKES, R. E.,AND NILSSON, N. J. 1971. Strips: A new approach to the
application of theorem proving to problem solving.Artificial Intelligence
2, 3-4, 189 – 208.

FUNGE, J., TU, X., AND TERZOPOULOS, D. 1999. Cognitive modeling:
knowledge, reasoning and planning for intelligent characters. InPro-
ceedings of ACM SIGGRAPH, ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA, 29–38.

GRAMA , A. Y., AND KUMAR , V. 1993. A survey of parallel search algo-
rithms for discrete optimization problems.ORSA JOURNAL ON COM-
PUTING 7.

HORLING, B., LESSER, V., V INCENT, R., WAGNER, T., RAJA, A.,
ZHANG, S., DECKER, K., AND GARVEY, A., 1999. The TAEMS White
Paper.

LAU , M., AND KUFFNER, J. J. 2005. Behavior planning for character
animation. InProceedings of the ACM SIGGRAPH/EG Symposium on
Computer Animation, ACM, New York, NY, USA, 271–280.

LOYALL , A. B., REILLY, W. S. N., BATES, J., AND WEYHRAUCH, P.
2004. System for authoring highly interactive, personality-rich inter-
active characters. InProceedings of the ACM SIGGRAPH/EG Sympo-
sium on Computer Animation, Eurographics Association, Aire-la-Ville,
Switzerland, 59–68.

LOYALL , A. B. 1997.Believable agents: building interactive personalities.
PhD thesis, Pittsburgh, PA, USA.

MASSIVE SOFTWARE INC., 2010. Massive: Simulating life.
www.massivesofware.com.

MATEAS, M. 2002. Interactive drama, art and artificial intelligence. PhD
thesis, Pittsburgh, PA, USA.

MENOU, E. 2001. Real-time character animation using multi-layered
scripts and spacetime optimization. InProceedings of ICVS ’01,
Springer-Verlag, London, UK, 135–144.

PERLIN, K., AND GOLDBERG, A. 1996. Improv: a system for scripting
interactive actors in virtual worlds. InProceedings of ACM SIGGRAPH,
ACM, New York, NY, USA, 205–216.

SHAO, W., AND TERZOPOULOS, D. 2005. Autonomous pedestrians. In
Proceedings of the ACM SIGGRAPH/EG Symposium on Computer Ani-
mation, ACM, New York, NY, USA, 19–28.

SUNG, M., GLEICHER, M., AND CHENNEY, S. 2004. Scalable behaviors
for crowd simulation.Computer Graphics Forum 23, 3, 519–528.

THIEBAUX , M., MARSELLA, S., MARSHALL , A. N., AND KALLMANN ,
M. 2008. Smartbody: behavior realization for embodied conversational
agents. InProceedings of AAMAS’08, 151–158.

V ILHJÁLMSSON, H., CANTELMO , N., CASSELL, J., E. CHAFAI , N.,
K IPP, M., KOPP, S., MANCINI , M., MARSELLA, S., MARSHALL ,
A. N., PELACHAUD , C., RUTTKAY, Z., THÓRISSON, K. R., WELBER-
GEN, H., AND WERF, R. J. 2007. The behavior markup language: Re-
cent developments and challenges. InProceedings of IVA ’07, Springer-
Verlag, Berlin, Heidelberg, 99–111.

YU, Q., AND TERZOPOULOS, D. 2007. A decision network framework for
the behavioral animation of virtual humans. InProceedings of the ACM
SIGGRAPH/EG Symposium on Computer Animation, Eurographics As-
sociation, Aire-la-Ville, Switzerland, 119–128.

YU, Q. 2007.A decision network framework for the behavioral animation
of virtual humans. PhD thesis, Toronto, Ont., Canada.

Action Move(Velocity : v, TStep: dt) {
Precondition:
CheckCollisions(self.position + vdt)

== false;
Effect:
self.position = self.position + vdt;

Cost Effect:
self.energyCost = 1

2
(self.mass)|v|ˆ2;

self.distanceCost = |v|dt;
}

(a)

Behavior GoalBehavior {
Precondition:
self.goalPosition 6= 0;

Goal:
self.goalPosition;

Objective Function:
min(self.distanceCost

+ self.energyCost);
}

(b)

Constraint PedSignalC {
Precondition:
true;

Constraint:
if ((signal.signalState == 0

∧ CrossingRoad(self.position,C))
∨ (signal.signalState == 1
∧ CrossingRoad(self.position,A))
∨ (trafficSignal.signalState == 2
∧ CrossingRoad(self.position,B)))
true;

else false;
}

(c)

Action ChangeTrafficSignal {
Precondition:
true;

Effect:
timeMod = currentTime % 100;
if (timeMode <= 35)

self.signalState = 0;
else if (timeMode <= 70)

self.signalState = 1;
else self.signalState = 2;

}

(d)

CostModifier CautionCM {
Precondition:
∃ a: a.danger > 0 ;

Cost Effect:
self.safetyCost = max(a.danger);

}

(e)

CostModifier DaringCM {
Precondition:
∃ a: a.danger > 0 ;

Cost Effect:
self.safetyCost =

MAX_COST - max(a.danger);
}

(f)

EffectModifier DaringEM {
Precondition:
true;

Effect:
a = arg max(a.danger) ;
self.goalPosition = a.position;

}

(g)

EffectModifier ElderlyEM {
Precondition:
true;

Effect:
self.speed = min(self.speed,1.0)

}

(h)

EffectModifier FollowEM(Actor : a) {
Precondition:
true;

Effect:
self.goalPosition = a.position;

}

(i)

Behavior FireFighterB {
Precondition:
∃ a ∈ Actors: a.fire > 0;

Goal:
∀ a ∈ Actors a.fire = 0;

Objective Function:
min(0.3·self.safetyCost

+ self.distanceCost
+ self.energyCost);

}

(j)

Behavior IndividualVendorB {
Precondition:
true;

Goal:
self.money >= 100;

Objective Function:
min(self.stolenCost);

}

(k)

Behavior CooperativeVendorB {
Precondition:
true;

Goal:
self.money >= 100 ∧
otherVendor.money >= 100;

Objective Function:
min(self.stolenCost

+ otherVendor.stolenCost);
}

(l)

Behavior ThiefB {
Precondition:
true;

Goal:
self.money >= 100

Objective Function:
min(self.distanceCost

+ self.energyCost);
}

(m)

Action Steal(Actor a, Amount: m){
Precondition:
m <= a.money ∧
DistanceBetween(self,a) < 1.0;

Effect:
a.money = a.money - m
self.money = self.money + m

Cost:
self.stealCost = m;
a.stolenCost = m;

}

(n)

CostModifier RiskCostModifier {
Precondition:
true;

Effect:
self.stealCost +=
max Dist(self.position,a.position)

}

(o)

Constraint AccidentC {
Precondition:
true;

Constraint:
// Two vehicles must collide
// at some point in time
∃ a1, a2 :
IsAVehicle(a1) ∧
IsAVehicle(a2) ∧
Distance(a1, a2) < 5.0;

}

(p)

EffectModifier RecklessVehicleEM {
Precondition:
true;

Effect:
self.collisionRadius = MIN;
self.followSignals = FALSE;

}

(q)

CostModifier RecklessVehicleCM {
Precondition:
true;

Effect:
//low cost for traveling at MAX_SPEED
self.speedCost = MAX_SPEED-self.speed;

}

(r)

Table 1: Scripts used to author the city simulation.

