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Abstract

The majority of steering algorithms model very few locomotion
constraints or capabilities, and output only a force or velocity vec-
tor to motion synthesis. This simplistic interface between naviga-
tion and motion synthesis lacks control and introduces ambigui-
ties. This paper considers howfootsteps can be used to navigate in
crowds of characters. We propose a novel locomotion model that
represents a character’s stepping state and footstep actions using
a 2D approximation of an inverted spherical pendulum model of
bipedal locomotion. We use this model with a short-horizon plan-
ner to generate a timed sequence of footsteps that existing motion
synthesis techniques can follow exactly. During planning, our lo-
comotion model not only constrains characters to navigate with re-
alistic locomotion, but more importantly, it also enables characters
to control finer-grain subtlenavigation behaviors that are possible
with exact footsteps. Our approach can navigate crowds of hun-
dreds of individual characters with collision-free, natural behaviors
in real-time.

Keywords: steering behaviors, navigation, autonomous agents

1 Introduction

Autonomous characters that navigate in dynamic environments are
an essential part of any living, breathing virtual world. Such char-
acters are required in games, movies, urban planning simulations,
training simulators, and architecture visualizations. Despite many
advancements in crowd simulation and steering algorithms, au-
tonomous characters still lack intelligentlocal steering interactions
in dynamic crowds of characters. Intelligent local interactions re-
quire that characters can step in a variety of ways, have tighter,
dynamically changing collision bounds, and exhibit the human-
like ability to understand exactly how they can steer through a dy-
namic environment in the immediate short-term future,i.e., local
space-time planning, not just prediction. Very few steering algo-
rithms have considered these aspects, and no previous algorithm
has demonstrated the synergy of all three aspects combined.

The root of this problem is the limited types of actions that have
been used to make steering decisions – more generally, the limited
locomotion model. In our context, the locomotion model refers to
the state and action spaces, constraints, and costsused for making
steering decisions, which is different from the locomotion used by
the underlying motion synthesis for animations. The vast majority
of steering algorithms use one of two locomotion models: (1) an
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oriented particle model, where the character locomotes by choos-
ing a force or velocity vector, or (2) a discrete set of locomotion
actions where the character locomotes by choosing one of the ac-
tions. These locomotion models have the following disadvantages:

• Limited locomotion constraints: Very few navigation algo-
rithms account for locomotion constraints. Trajectories may
have discontinuous velocities, oscillations, awkward orienta-
tions, or may try to move a character during the wrong ani-
mation state, and these side-effects make it harder to animate
the character intelligently. For example, a character moving
forward cannot easily shift momentum to the right when step-
ping with the right foot, and a character would rarely side-step
for more than two steps at a steady walking speed.

• Limited navigation control: Existing steering algorithms usu-
ally assume that motion synthesis will automatically know
how to obey a vector interface. This is not the case – motion
synthesis does not have enough information to choose appro-
priate subtle maneuvers, such as side-stepping versus reori-
enting the torso, stepping backwards versus turning around,
stopping and starting, planting a foot to change momen-
tum quickly, or carefully placing footsteps in exact locations.
These details are critical to depicting a character’s local steer-
ing intelligence, and thus it is appropriate for steering to have
better control.

In this paper, we propose one possible solution to this problem:
generating sequences of footsteps as the interface between naviga-
tion and motion synthesis. Footsteps, including location, orienta-
tion, and timing, are an intuitive and representative abstraction for
most locomotion tasks. Footsteps offer finer control which allows
navigation to choose more natural and nuanced actions. At the same
time, the series of footsteps produced by navigation communicates
precise, unambiguous spatial and timing information to motion syn-
thesis. Since there exist several motion synthesis algorithms that
can animate a character to follow timed footsteps exactly [Girard
1987; Ko and Badler 1992; Van de Panne 1997; Torkos and van de
Panne 1998; Chung and Hahn 1999; Coros et al. 2008; Donikian
2009], the main challenge and focus of our work is how togenerate
footsteps as the output of a navigation algorithm.

We develop a novel locomotion model (used for making steer-
ing decisions, not animations) that represents a character’s step-
ping state and possible footstep actions. Given this model, we use
a space-time planning approach to dynamically generate a short-
horizon sequence of footsteps. The output of our system is an ef-
ficient sequence of space-time footsteps that avoids time-varying
collisions, satisfies footstep constraints for natural locomotion, and
minimizes the effort to reach a goal. In its most general form, this
is a nonholonomic optimization planning problem in continuous
space where the configuration and action spaces must be dynam-
ically re-computed for every plan. This is generally acknowledged
to be a difficult type of planning problem [LaValle 2006]. How-
ever, by (a) using ananalytic approximation of inverted pendulum
dynamics, (b) allowing near-optimal plans, (c) exploiting domain-
specific knowledge, and (d) searching only a limited horizon of
nodes, our approach generates natural footsteps in real-time for
large crowds of characters. Characters successfully avoid collisions
with each other and produce dynamically stable footsteps that cor-
respond to natural and fluid motion, with precise timing constraints.
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Because the most significant biomechanics and timing constraints
are already taken into account in our navigation locomotion model,
integrating our results with an existing motion synthesis alorithm
that follows footsteps is straightforward and results in animations
that are often richer and less awkward than previous approaches.

Contributions. This paper presents a new approach to steering
in dynamic crowds that uses space-time planning combined with a
biomechanically-based footstep locomotion model. To our knowl-
edge, this is the first crowd steering algorithm to generate footsteps
and to use a locomotion model that is more detailed than the ori-
ented particle model or discrete animation actions model. Our foot-
step planning approach enables characters to steer with natural va-
riety, but also with spatial precision and temporal precision. All
relevant biomechanical constraints are accounted for, such as stride
length, foot orientation, momentum, center of mass, and step tim-
ing, to ensure that the output footsteps are biomechanically plausi-
ble. Our approach also incorporatesdynamic collision bounds that
are tighter than a single coarse collision radius. We also describe
appropriate energy costs that allow characters to choose natural, in-
telligent footsteps for a variety of challenging steering situations.
The amortized performance cost of planning a short sequence of
footsteps is extremely low, which allows us to simulate large crowds
of characters in real-time on a single thread with natural, collision-
free, locally intelligent behaviors.

2 Related Work

Prior work in steering. A large amount of existing work has al-
ready successfully modeled various phenomena of pedestrian and
crowd steering. Only a few representative works are described here,
with emphasis on the locomotion models used. There are many
more works on agent navigation, collision avoidance, global plan-
ning, and crowd simulation that are not listed here [Badler 2008].

Reynolds [Reynolds 1987] pioneered group and crowd behaviors
in graphics by introducing the boids behavioral model. In addi-
tion to its other influences, this was one of the earliest works to
demonstrate theparticle abstraction - each agent represented as a
particle that moves with a force or velocity vector. It quickly be-
came a standard way to modularize the navigation and animation
challenges from each other.

With this simplified model of an agent’s locomotion capabilities,
the navigation task is essentially a question of how to choose forces
(or velocities) intelligently. Two widely accepted strategies are (1)
the social forces model [Helbing and Molnár 1995], which asso-
ciates a small force field around agents and obstacles, and (2) the
steering behaviors model [Reynolds 1999], where forces are proce-
durally computed to perform desired functions such as seek, flee,
pursuit, evasion, and collision avoidance. Many works are ex-
tensions or elaborations of these two ideas. The HiDAC frame-
work [Pelechano et al. 2007] adds many carefully chosen psycho-
logical and social forces to support crowds of agents. Gayle et
al. [Gayle et al. 2009] use adaptive roadmaps to plan navigation
decisions on top of a social force model. Loscos et al. [Loscos et al.
2003] define specific rules that determine how an agent steers to
avoid collisions. Boulic [Boulic 2008] extends the work Reynolds
to consider the orientation of agents more carefully as well as sup-
porting more general goals. Velocity obstacles [Fiorini and Shiller
1998] and reciprocal velocity obstacles [den Berg et al. 2008] fo-
cus on a mathematically elegant collision avoidance procedure that
computes steering forces. Lamarche and Donikian [Lamarche and
Donikian 2004] demonstrate a more complete agent steering frame-
work, incorporating global planning and local reactive steering, out-
putting a velocity vector. Treuille et al. [Treuille et al. 2006] com-
pute velocities of all agents globally, able to capture a variety of

macroscopic crowd phenomena.

Several recent steering techniques have enhanced the vector based
locomotion model in various ways. Goldenstein et al. [Goldenstein
et al. 2001] use separate dynamical systems models to compute
turning and speed of each agent. Kapadia et al. [Kapadia et al.
2009] use locally computed fields to determine speed and orienta-
tion separately. Another interesting enhancement is to use empirical
data of real crowds. Paris et al. [Paris et al. 2007] use space-time
predictive collision avoidance that is tuned based on real data. Lee
et al. [Lee et al. 2007] and Lerner et al. [Lerner et al. 2007] both
use a database of trajectories from real crowds to compute steering
decisions. Note that even though Lee et al. use motion graphs to
synthesize motions, the locomotion model used to make steering
decisions is only a data-driven particle model.

A few steering techniques take into account the locomotion that
an animation system will actually be capable of. Paris and
Donikian [Paris and Donikian 2009] demonstrate a more complete
framework for virtual characters, using a similar velocity vector
output to an animation module. However, in their work, animation
is part of the closed-loop system, and can potentially tell steering
that an action is not plausible. Musse and Thalmann [Musse and
Thalmann 1997] demonstrated psychological and social aspects of
navigation, and they use a combination of vector-based steering
and steering from a set of locomotion behaviors. Shao and Ter-
zopoulos [Shao and Terzopoulos 2005] model many layers of au-
tonomous pedestrians from cognition to navigation, and the steering
decision is chosen from a set of parameterized navigation behaviors
that correspond to animations the character can produce. Zhang et
al. [Zhang et al. 2009b] propose a velocity-based model that takes
into account locomotion properties from data collected about real
human locomotion. Van Baster and Egges [van Baster and Egges
2009] discuss the problems that arise when interfacing navigation
with motion synthesis, for example, the problem of using the pelvis
as an exact reference point between navigation and motion synthe-
sis is often problematic since the pelvis naturally oscillates during
locomotion. They propose various abstractions that reduce such
discrepancies. In comparison to these works, by using footsteps, we
achieve properly constrained locomotions without limiting charac-
ters to a smaller set of motions, and using footseps as the interface
to motion synthesis avoids the need for corrective abstractions be-
tween navigation and motion synthesis.

Nearly all the above works, whether using a vector-based particle
model or a set of steering choices, have some fundamental limi-
tations. The orientation of characters (if it is modeled at all) is
always facing the direction of the agent’s movement. As such, pre-
vious crowd simulations have not demonstrated natural u-turns or
side-steps, and many local interactions between navigating char-
acters cause too much turning while agents “fight” to get around
each other. Second, previous crowd steering approaches have dif-
ficulty with tight spaces, where precise steering is necessary. Fi-
nally, the collision bounds of characters is usually a single coarse
radius, which forces characters to remain artificially sparse. These
issues are critical for characters to appear intelligent when viewed
up close.

Locomotion models in other fields.There are many fully 3D lo-
comotion models used in the field of motion synthesis and anima-
tion. This includes physically based models,e.g., [Faloutsos et al.
2001; Hodgins et al. 1995], kinematic and data-driven approaches,
e.g., [Sturman 1994; Gleicher 1998; Gleicher 2001; Kovar et al.
2002], and detailed musculo-skeletal models,e.g., [Lee et al. 2009].

Of particular interest in this context are motion planning tech-
niques, which often overlap with pedestrian navigation; only a
few are listed here. Treuille et al. [Treuille et al. 2007] demon-
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strated low-dimensional controllers for motion synthesis to obey
a vector command interface. Their work did demonstrate heuris-
tic navigation behavior for dynamic crowds, but this type of nav-
igation still has all the same problems as the vector interface de-
scribed above, and increases the dimensionality of their approach.
[Lau and Kuffner 2005] demonstrated crowds of real-time charac-
ters that plan sequence of states that correspond to motion clips.
While their planning approach is similar to ours, their approach
is essentially based on discrete animations, and such approaches
would need far too many actions to cover the finer-grain space
of footsteps. For only navigation, this full-body approach is un-
necessary. Some works have also proposed parametrized motion
synthesis techniques, however we note that such parameterization
is essentially an “interface” between a controller and the underly-
ing synthesis, and a vector-based parameterization suffers the same
problems as described above.

Our work could be considered a parameterized motion planning ap-
proach, but the output of our system is a sequence of footsteps, not
motion clips. By keeping navigation and motion synthesis separate,
the dimensionality of both navigation and animation tasks remains
lower, making it possible to scale footstep planning to hundreds,
even thousands of characters in the space-time domain. This also
makes it tractable to consider the continuous space of possible foot-
steps if necessary, instead of only supporting a limited discrete set
of actions. At the same time, planning footsteps allows navigation
to control animations better than a vector interface.

To improve performance of motion planning techniques, Lau and
Kuffner [Lau and Kuffner 2006] demonstrated a technique of pre-
computing the search space, allowing an online process to quickly
form space-time plans. They demonstrated crowds of characters
able to navigate in dynamic environments using a state machine of
discrete motion clips. It is not clear how their approach would scale
when increasing the variety of motion clips, necessary for locally
intelligent steering. Additionally, they use only spatial distance as
the cost of actions for their space-time planner, which means that
characters would try to minimize path length, but not path time,
and this may cause unnatural results in tight or challenging situa-
tions such as doorways. Their precomputation methodology could
be applied to our footstep planner as well, but so far our approach
is scalable even without this extension.

While example-driven locomotion models are very popular in an-
imation, biomechanics has extensively studied analytical models
intended to capture the subtleties of human locomotion. For nor-
mal human walking, the two most common models are the six de-
terminants of gait model [Saunders et al. 1953] and the inverted
pendulum model [Kajita et al. 2001]. The work in [Kuo 2007]
compares the kinematic model using six determinants of gait with
the inverted pendulum model for bipedal locomotion. Running has
been modeled using a foot-spring model [Meghdari et al. 2008]. All
these models generally have high dimensionality, complex analyt-
ical representations, and are impractical models for crowd simula-
tions. Our approach is to simplify an inverted spherical pendulum
model, keeping the aspects that are necessary to make decisions
about where to place footsteps for navigation, and removing other
complexities related to biomechanics and animation.

Footsteps.Several motion synthesis approaches have been demon-
strated to follow a given sequence of footsteps. The work of [Gi-
rard 1987] addresses how a user can specify desired animations and
how to integrate this with natural limb motion models, and serves
as the basis of modern bipedal animation tools [Autodesk 2010].
The work in [Van de Panne 1997; Torkos and van de Panne 1998]
generates animations from footprints for bipeds and quadrupeds.
Combining motion clips and biomechanical constraints, [Wu et al.
2008] proposes a simple and effective method for synthesizing con-

trolled stepping motions. StepSpace [van Basten and Egges 2010]is
a recent example-based method that can follow footsteps with pre-
cise timing constraints. Biomechanical and gait analysis has also
been used in the development of models that follow footsteps natu-
rally [Chung and Hahn 1999]. FootSee [Yin and Pai 2003] supports
user-controlled avatars using foot-pressure sensor pads as input.

The challenge ofgenerating precise footsteps has been explored in
robotics and, to a limited extent, animation. Torkos and Van de
Panne [Torkos and van de Panne 1998] generated footsteps to ran-
domly wander, changing direction if nearby objects were too close;
this was primarily used as a way to demonstrate their motion syn-
thesis system. Chung and Hahn [Chung and Hahn 1999] generated
footsteps by aligning the next step to the orientation of the trajec-
tory, using smaller footsteps around curves. Choi et al. [Choi et al.
2003] use roadmaps to compute sequences of footsteps that are pos-
sible with the given motion clips. This technique requires costly
roadmap construction and footstep verification preprocessing, and
was also demonstrated for only a single character in a static envi-
ronments. [Coros et al. 2008] demonstrate a physically-based char-
acter with the ability to carefully place footsteps in exact locations.
[Zhang et al. 2009a] propose a hierarchical planning approach that
compute stable footsteps and upper body motion to solve manipu-
lation tasks in highly constrained environments. In all these works,
the focus was on animations for individual characters rather than
navigation of crowds.

Research in robotics [Chestnutt et al. 2005; Nishiwaki et al. 2001;
Kuffner et al. 2003] explores autonomous foot-placement to avoid
obstacles while navigating towards a goal. These works, however
focus on a single character, and limit the state space to statically
stable states. Furthermore, their focus is on practical robot control,
and so they do not model the subtle ways that humans use (i.e.
choose) footsteps while navigating in dynamic crowded situations,
involving many characters.

Comparison to our work. Our work demonstrates that a steer-
ing algorithm can have better navigation features without adverse
effects to performance, including short-term space-time planning,
dynamic collision bounds, and a better locomotion model. Unlike
many motion planning techniques which focus on high dimensional
full-body tasks for a single character, our work focuses on demon-
strating large numbers of interacting characters in dynamic crowds.
We achieve this by modularizing the navigation and animation tasks
with a footstep interface. This makes it possible to keep both tasks
low-dimensional without reducing the potential quality. Because
enough work already exists to animate characters to follow exact
footsteps including timing information, we focus on the steering
aspect, how to generate footsteps, which has not been deeply ex-
plored yet.

3 Locomotion Model

The primary data structure in our locomotion model is afootstep.
Each footstep includes the following information: (1) the trajectory
of the character’s center of mass, including position, velocity, and
timing information, (2) the location and orientation of the foot it-
self, and (3) the cost of taking the step. In this section, we describe
how the model computes these aspects of a footstep, as well as the
constraints associated with creating a footstep.

3.1 Inverted pendulum model

The analogy between human locomotion and the inverted pendu-
lum is well known; the pivot of the pendulum represents a point
on or near a footstep, while the weight of the pendulum represents
a character’s center of mass. To automatically generate footsteps,
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(a) (b) (c)

Figure 1: Our footstep locomotion model.(a) Depiction of state and footstep action parameters. The state includes the 2D approximation of
an inverted spherical pendulum trajectory.(b) A sagittal view of the pendulum model used to estimate energy costs.(c) The collision model
uses 5 circles that track the torso and feet over time, allowing tighter configurations than a single coarse radius.

we define a 2D approximation to the dynamics of inverted spherical
pendulum.

Our approach is inspired by thelinear inverted pendulum
model [Kajita et al. 2001]. In their work, linear equations of a
3D pendulum are derived by constraining the motion of the cen-
ter of mass to a horizontal 2D plane. Using their model, the passive
dynamics of a character’s center of mass pivoting over a footstep
located at the origin is described by:

ẍ(t) =
g

l
x, (1)

ÿ(t) =
g

l
y, (2)

whereg is the positive gravity constant,l is the length of the char-
acter’s leg from the ground to the center of mass (i.e., the length
of the pendulum shaft), and(x, y) is the time-dependent 2D posi-
tion of the character’s center of mass (i.e., the pendulum weight).
It is interesting to note that bothx andy have the same dynamics
as the basic planar inverted pendulum when using the small-angle
approximation,x ≃ sin x. The small-angle approximation is valid
for the region of interest; the angle between a human’s leg and the
vertical axis rarely exceeds 30 degrees.

In this work we further assume thatl remains constant – a rea-
sonable approximation within the small-angle region. Then, given
initial position(x0, y0) and initial velocity(vx0

, vy0
), the solution

for x(t) is a general hyperbola:

x(t) =
(kx0 + vx0

)ekt + (kx0 − vx0
)e−kt

2k
, (3)

andy(t) has a similar solution, wherek =
√

g

l
.

We use the second-order Taylor series approximation of this hyper-
bola:

x(t) = x0 + vx0
t +

x0k
2

2
t
2
, (4)

y(t) = y0 + vy0
t +

y0k
2

2
t
2
. (5)

Finally, this parabola is translated, rotated, reflected, and re-
parameterized from world space into a canonical parabola in local
space (Figure 1a):

x(t) = vx0
t, (6)

y(t) = αt
2
, (7)

ẋ(t) = vx0
, (8)

ẏ(t) = 2αt, (9)

such that bothvx0
andα are positive.

Evaluating the trajectory. Equations 6-9 allow us toanalytically
evaluate the position and velocity of a character’s center of mass
at any time. The implementation is extremely fast: first, the lo-
cal parabola and its derivative are evaluated at the desired time,
and then the local position and velocity are transformed from the
canonical parabola space into world space. This makes it practical
to search through many possible trajectories for many characters in
real-time.

3.2 Footstep actions

The state of the characters ∈ S is defined as follows:

s = 〈(x, y), (ẋ, ẏ), (fx, fy), fφ, I ∈ {left,right}〉, (10)

where(x, y) and(ẋ, ẏ) are the position and velocity of the center of
mass of the character at theend of the step,(fx, fy) andfφ are the
location and orientation of the foot, andI is an indicator of which
foot (left or right) is taking the step. The state spaceS is the set
of valid states that satisfy the constraints of the locomotion model
described below.

A footstep action transitions a character from one state to another.
An actiona ∈ A is given by:

a = 〈φ, vdesired, T 〉, (11)

whereφ is the desired orientation of the parabola,vdesired is the
desired initial speed of the center of mass, andT is the desired
time duration of the step. The action spaceA is the set of valid
footstep actions, where the input and output states are both valid.
Note that when the momentum and orientation of the character’s
previous step is fixed, varyingφ directly affects the width of the
parabolic trajectory, thus allowing for a large variety of stepping
choices.

A key aspect of the model is the transition function,s′=
createFootstep(s, a). This function receives a desired footstep ac-
tiona and a states and returns a new states′ if the action is valid. It
is implemented as follows. First,φ, which indicates the orientation
of the parabola, is used to compute a transform from world space to
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Figure 2: The orientation of the swing foot is constrainted by the
previous step and the chosen trajectory (red line).

local parabola space. Then, the direction of velocity(ẋ, ẏ) from the
end of the previous step is transformed into local space, normalized,
and re-scaled by the desired speedvdesired. With this local desired
velocity, there is enough information to solve forα, and then Equa-
tions 6-9 are used to compute(x, y) and(ẋ, ẏ) at the end of the next
step. The foot location is always located at(fx, fy) = (0,−d) in
local space, whered is a user-defined parameter that describes the
distance between a character’s foot and center at rest. Additionally,
for every footstep, an interval of valid foot orientations is main-
tained, and the exact foot orientation within this interval is chosen
with a fast, simple post-process. (Foot orientations are discussed
further below.) Finally, all state information is transformed back
into world space, which serves as the input to create the next foot-
step. During the entire process, checks are made to verify that the
transition and new state are valid based on constraints described
below.

3.3 Locomotion constraints

Biomechanics properties. Several properties of human locomo-
tion are automatically enforced by the definition of our model. Cen-
ter of mass trajectories are guaranteed to be at least G-1 continuous.
We can detect whether the center of mass will remain between the
two feet by making sure the local-space parabola remains positive.
The error between parabolic trajectories and more accurate inverted
pendulum trajectories is negligible; specifically, parabolic trajecto-
ries have higher eccentricity than hyperbolas, and the error intro-
duced by a parabola approximation can only push a character more
quickly towards the next step, never away from it.

Footstep orientation. Intuitively, it would seem that footstep ori-
entations must be an additional control parameter when creating a
footstep. However, the choice of footstep orientation seems to have
no direct effect on the dynamics of the center of mass trajectory;
in our experience the foot orientation only constrains the options
for current trajectory and future footsteps. This is a key aspect to
our model’s efficiency – instead of increasing the dimensionality
of our search space to include foot orientation, we can in fact use
orientation to constrain the search space into a lower dimensional
system.

To implement this constraint, we compute an interval
[f

φinner, fφouter] of valid foot orientations when creating a
footstep. This interval is constrained by the same interval from the
previous step, and further constrained by the choice of parabola
orientationφ used to create the next footstep (Figure 2):

[f
φinner, fφouter] = [fφouter, fφinner+

π

2
]prev ∪ [φ, (ẋ, ẏ)].

(12)
Note the ordering of bounds in these intervals; the next foot’s
outer bound is constrained by the previous foot’s inner bound. In
words, the constraining interval[φ, (ẋ, ẏ)] describes that the char-
acter would not choose a foot orientation that puts his center of mass
on the outer side of the foot. Similarly, a human would rarely orient
their next footstep more outwards than the orientation of their mo-

mentum – this constraint is unintuitive because it is easy to overlook
momentum. Finally, parameters can be defined that allow a user to
adjust these constraints, for example, to model a slow character that
has difficulty with sharp, quick turns.

Space-time collision model.For any given footstep, our model can
compute thetime-varying collision bounds of the character at any
exact time during the step. Thus, to determine if a footstep may
cause a collision, we iterate over several time-steps within the foot-
step and query the collision bounds of other nearby characters for
that time. The collision bounds are estimated using 5 circles, as
depicted in Figure 1c. If a potential footstep action causes any col-
lision, that footstep is considered invalid. In our system, a character
can only test collisions with other characters that overlap his visual
field.

User parameters.Our locomotion model offers a number of intu-
itive parameters that a user can modify. These parameters include
the preferred value, as well as min and max limits of the step timing
and stride length, the desired velocity of the center of mass and its
limits, the interval of admissible foot orientations described above
and its bounds, et al. By modifying these parameters a user can
practically create new locomotion models. For example, restricting
the range of some of the parameters results in a locomotion model
can result in asymmetric stepping like an injured character.

Our model uses common default values for these parameters. For
example, the desired velocity is set based on the Froude ratio,Fr.
The Froude ratio provides a simple way to estimate the desired ve-
locity of locomotion. For a typical human-like walking gait, an
average value of the Froude ratio is 0.25 [Biknevicius and Reilly
2006]. The associated desired velocity isv =

√
glFr, whereg is

the acceleration of gravity andl is the height of the pelvis.

3.4 Cost function

We define the cost of a given step as the energy spent to execute a
footstep action. We model three forms of energy expenditure for
a step: (1)∆E1, a fixed rate of energy the character spends per
unit time, (2)∆E2, the work spent due to ground reaction forces
to achieve the desired speed, and (3)∆E3, the work spent due to
ground reaction forces accelerating the center of mass along the tra-
jectory. The total cost of a a footstep action transitioning a character
from s to s′ is given by:

c(s, s′) = ∆E1 + ∆E2 + ∆E3. (13)

Fixed energy rate.The user defines a fixed rate of energy spent per
second, denoted asP . For each step, this energy rate is multiplied
by the time duration of the stepT to compute the cost:

∆E1 = P · T. (14)

This cost is proportional to the the amount of time it takes to reach
the goal, and thus minimizing this cost corresponds to the character
trying to minimize the time it spends walking to his goal. We found
that good values forP are roughly proportional to the character’s
mass.

Ground reaction forces. We model three aspects of ground reac-
tion forces that are exerted on the character’s center of mass, based
on knowledge from biomechanics literature [Kuo 2007]. The geom-
etry and notation of the cost model is shown in Figure 1b. First, at
the beginning of a new step, some of the character’s momentum dis-
sipates into the ground. We estimate this dissipation with straight-
forward trigonometry, reducing the character’s speed fromv0 to
v0 cos(2θ). Second, in order to resume a desired speed, the charac-
ter actively exerts additional work on his center of mass, computed
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as:
∆E2 =

m

2

∣

∣(vdesired)
2 − (v0 cos(2θ))2

∣

∣ . (15)

This cost measures the effort required to choose a certain speed.
At every step, some energy is dissipated into the ground, and if a
character wants to maintain a certain speed, he must actively add
the same amount of energy back into the system. On the other
hand, not all energy dissipates from the system after a step, so if
the character wants to come to an immediate stop, the character
also requires work to remove energy from the system. Minimizing
this cost corresponds to finding footsteps that require less effort,
and thus tend to look more natural. Furthermore, when walking
with excessively large steps,cos(2θ) becomes smaller, implying
that more energy is lost per step.

It should be noted that there is much more complexity to real
bipedal locomotion than this cost model, for example, the appro-
priate bending of knees and ankles, and also the elasticity of human
joints can significantly reduce the amount of energy lost per step,
thus reducing the required work of a real human versus this inverted
pendulum model. However, while the model is not an accurate
measurement, it is more than enough forcomparing the effort of
different steps.

∆E2 captures only the cost of changing a character’s momentum
at the beginning of each step. The character’s momentum may also
change during the trajectory. For relatively straight trajectories, this
change in momentum is mostly due to the passive inverted pendu-
lum dynamics that requires no active work. However, for trajec-
tories of high curvature, a character spends additional energy to
change his momentum. We model this cost as the work required to
apply the force over the length of the step, weighted by constantw:

∆E3 = w · F · length= w · mα · length. (16)

Note thatα is the same coefficient in Equation 7, the acceleration
of the trajectory. α increases if the curvature of the parabola is
larger, and also if the speed of the character along the trajectory
is larger. Therefore, minimizing this cost corresponds to prefer-
ring straight steps when possible, and preferring to go slower (and
consequently, smaller steps) when changing the direction of mo-
mentum significantly. The weightw can be adjusted to prioritize
whether the character prefers to stop (i.e. it costs less energy to
avoid turning) or walk around an obstacle (i.e. it costs more energy
to stop). In general we found good values of weightw to be be-
tween0.2 and0.5. The interpretation is that twenty to fifty percent
of the curvature is due to the character’s effort.

4 Planning Algorithm

Our autonomous characters navigate by planning a sequence of
footsteps using the locomotion model described above. In this
section we detail the implementation and integration of the short-
horizon planner that outputs footsteps for navigation.

Long-term path planning. To navigate through large environ-
ments, we first compute a long-term path using A⋆. A local footstep
goal is repositioned just before planning footsteps, placed along the
long-term path, approximately 10 meters ahead of the character.

Generating discretized footstep actions.The choices for a char-
acter’s next step are generated by discretizing the action spaceA
in all three dimensions and using thecreateFootstep(s, a) function
to compute the new state and cost of each action. We have found
thatvdesiredandT can be discretized extremely coarsely, as long as
there are at least a few different speeds and timings. Most of the
complexity of the action space lies in the choices for the parabola

ProcedureSHBFS(ss,sg)
Input : ss= Start state of agent
Input : sg= Goal state of agent
Output : Ps

k = {ss, s1, s2...sk} wherePs
k is complete ifsk = sg

OPEN = {ss}

CLOSED = {φ}

while OPEN 6= {φ} ∨ |CLOSED| ≥ Nmax do
sc = args min(f(s)) wheres ∈ OPEN
if sc = sg then

Ps
g = generatePath(ss, sg, CLOSED)

return Ps
g

end
OPEN = OPEN− {sc}

CLOSED = CLOSED ∪ {sc}

A = generateDiscretizedActions(sc, sg)

foreacha in A do
s′ = createFootstep(sc, a)

if g(s′) > g(sc) + c(sc, s′) then
g(s′) = g(sc) + c(sc, s′)

end
f(s′) = g(s′) + h(s′)

OPEN = OPEN ∪ {s′}

end
end
sh = args min(h(s)) wheres ∈ CLOSED
Ps

h = generatePath(ss, sh, CLOSED)
return Ps

h

Algorithm 1 : Short Horizon Best First Search

orientation,φ. The choices forφ are defined relative to the veloc-
ity (ẋ, ẏ) at the end of the previous footstep, and the discretization
ranges from almost straight to almost U-turns. We note that the
first choice that humans would usually consider is to step directly
towards the local goal. To address this, we create a special option
for φ that would orient the character directly towards its goal. With
this specialized goal-dependent option, we found it was possible to
give fewer fixed options forφ, focusing on larger turns. Without
this option, even with a large variety of choices forφ, the character
appears to steer towards an offset of the actual goal and then takes
an unnatural corrective step.

Short-horizon best-first search.Our planner uses a short-horizon
best-first search algorithm that returns a near-optimal path,Ps

k =
{ss, s1, s2...sk}, from a start statess towards a goal statesg. The
implementation is shown in Algorithm 1.

The cost of transitioning from one state to another is given by
c(s, s′), described by Equations 13-16. The heuristic function,h(s)
estimates the energy along the minimal path froms to sg:

h(s) = cexpected × min |Pc
g|, (17)

wherecexpected is the energy spent in taking one normal footstep
action, andmin |Pc

g| is the number of steps along the shortest dis-
tance to the goal.

The horizon of our planner is the maximum number of nodes that
can be expanded for a single search. The path returned will be
complete,i.e. sk = sg if the goalsg lies within the horizon of
the planner. AsNmax → ∞, the path returned by the planner will
always find the goal if it exists. For efficiency reasons, however, we
limit the horizonNmax to reasonable bounds. If the planner reaches
the horizon without reaching the goal, it instead constructs an path
to a state from the closed list that had the best heuristic. Intuitively,
this means that if no path is found within the search horizon, the
planner returns a path to the node that had the most promise of
reaching the goal.
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Egress 2-way traffic 700 obstacles
50 agents 200 agents 500 agents

Avg. # nodes generated 137 234 261
Avg. # nodes expanded 82 190 192
Planner performance 1.6 ms 4.4 ms 3 ms

Amortized cost 20Hz 0.037 ms 0.1 ms 0.11 ms

Table 1: Performance of our footstep planner for a character. The
typical worst case plan generated up to 5000 nodes.

User parameters. Higher level steering decisions can be mod-
eled as hard constraints or soft constraints on the planner. Hard
constraints can essentially prune the search space, while soft con-
straints affect the cost of making certain decisions. For example, in
a city landscape, sidewalks can be considered less costly to traverse
than roads.

4.1 Interfacing with motion synthesis

Interfacing with our footstep navigation method is very flexible.
Our method can output properly timed footsteps, center of mass
trajectories and velocity or momentum of the character at any given
time. Of course, to take advantage of the full intelligence of our
approach, the motion synthesis should ideally be able to follow
properly timed sequences of footsteps, including footstep orienta-
tion. For offline, high-quality animation systems, our method can
be modified to output more accurate center of mass trajectories by
using the hyperbola described in Equation 3 instead of the parabolic
approximation, and by modifying the locomotion model and plan-
ner accordingly. The hyperbolic form is slower to evaluate, but it
and its derivatives are still analytic, and the center of mass trajecto-
ries more accurately represent the inverted pendulum dynamics – in
particular, the way a human’s center of mass “lingers” at the apex
of the motion.

Choosing exact footstep orientation. As described above, the
planner maintains an interval of valid foot orientations for every
step, constrained by the previous step’s interval, as well as the tra-
jectory of the current step. To compute the exact foot orientation for
a given step, we introduce a similar constraint that thenext step’s
trajectory constrains the orientation of the current step, now that we
have this information. This computation is the same interval arith-
metic described in Section 3. It is easy to see by contradiction that
this process will not cause an invalid interval of orientations: if the
interval becomes invalid during this process, that would imply that
no orientation of the current step could have produced a valid inter-
val of the next step, and this would have caused an invalid interval
during the planning process. The purpose of this is to further nar-
row down the orientations so that the final heuristic choice will be
reasonable with respect to the surrounding trajectory. The final ori-
entation can be any value within this final interval; we found a good
heuristic is to orient the foot as closely as possible to the orientation
of the next step’s trajectory.

5 Results

To demonstrate our footstep navigation, we used 3D Studio
Max [Autodesk 2010] scripting to automatically create animations
from our footsteps. Note that these animations are not motion cap-
ture; to our knowledge, the bipedal model in 3D Studio Max is
based on [Girard 1987], using inverse kinematics and a basic gait
model to follow the footsteps. As described above, there already
exist many motion synthesis techniques that can follow footsteps,
so our focus was to evaluate the quality of the footsteps chosen by
our planner.

Figure 8: Two hundred characters in a crowded corridor, navigat-
ing in real-time both ways.

Even though we visualized the animations offline with this method,
our planner works online, in real-time. Performance and search
statistics are shown in Table 1. One reason that our planner is fast
is because of the scope of footsteps: a short horizon plan of 5-10
footsteps takes several seconds to execute but only a few millisec-
onds to compute. The amortized cost of updating a character at
20Hz is shown in the table. These performance numbers were mea-
sured on a Core 2 process, using a single thread. With this per-
formance, it is practical to use footstep navigation in future games.
Figure 8 shows two hundred characters walking in both directions
in a crowded corridor. We were able to simulate hundreds, even
thousands of characters, but 3d Studio Max ran out of memory if
we tried to visualize more than 200 characters simultaneously.

Our short-horizon planner can solve challenging situations such as
potential deadlocks in narrow spaces. Figures 3 and 4 depict chal-
lenging doorway situations a character side steps allowing the other
pedestrian to go through first. The space-time aspect of our planner
helps the character to exhibit predictie, cooperative behaviors. Fig-
ure 4 is especially interesting, becase the doorway is barely wide
enough to fit a single pedestrian. Many previous navigation tech-
niques would rely on collision prevention at the walls until the char-
acter eventually finds the doorway.

Our time-varying collision model, shown ealier in Figure 1, fol-
lows more realistically the changes in bounds of a character than
fixed size disks, and allows much tigher spacing in crowded condi-
tions. An example of this is shown in Figure 5, where a group of
characters tightly squeeze through a narrow glass door.

The planner and locomotion model offer a number of intuitive and
fairly detailed parameters to interactively modify the behavior of
the virtual humans. Figure 6 shows two characters with the same
goals but different desired velocity. In Figure 7, restricting the range
of footstep orientations results into additional turning steps. For
additional results and associated animations, we refer the reader to
the accompanying video.

6 Discussion and Future Work

Footsteps are a very appropriate form of control since they are the
major contact point between a bipedal system and the external en-
vironment. By choosing to generate footsteps for navigation, us-
ing a space-time planning approach, and by using tighter dynamic
collision bounds, our approach is able to control characters more
precisely.

The ability of characters to stop is actually a specialized action in
our planner. Being based on a general planning approach, our tech-
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Figure 3: A character navigates through oncoming traffic at a doorway.

Figure 4: A character side-steps and yields to the other pedestrian, and then precisely navigates through the narrow doorway.

Figure 5: An egress simulation. Characters do not get stuck around the cornersof the glass door.

Figure 6: Two characters performing a U-turn with different, user-defined, desired velocity.

Figure 7: Two charactes performing a U-turn, with different user-defined ranges of foot orientations. The character on the right needs more
steps to turn.

8



UCLA Technical Report #100023

nique can be easily extended with other specialized actions, such
as running, jumping, or specialized motion capture clips, as long
as the action has well defined transitions, costs, and constraints ac-
cording to our state space. Similarly, our locomotion model can be
integrated with existing steering techniques to include higher level
behaviors. For example, we can exploit the property that there al-
ways exists a scalar field whose gradient is a given force field. This
means that any force-based steering technique can be translated into
a potential function that can be used with our planner.

There are some prominent aspects of bipedal locomotion that are
important in specialized situations, which our model does not con-
sider. For example, bending knees and ankles are fundamental to
capture more details about starting/stopping movements as well as
going up stairs. Furthermore, the center of pressure (i.e. pendulum
pivot) shifts from heel-to-toe during a step, and often times humans
can rotate their foot orientations in-place; these factors have an im-
pact on efficiency that we also do not model. Angular momentum
is yet another important physical quantity that has importance for
dancing and athletic activities. All these aspects may be important
for a “universal” virtual character, and so it is appropriate to con-
sider how to model these aspects in future work.

Similarly, not all costs that a character evaluates are related to effort
or energy. It would be useful to characterize costs related to social
and cognitive behaviors, where sometimes a character’s objective is
not necessarily to minimize effort. We hope to address this in future
work, as well.

We found it very interesting that foot orientation did not have to be
a parameter for the planner to find natural walking footsteps. This
brings up very interesting biomechanics questions: what are the
actual abstractions and parameters real humans use to decide one
footstep over another? What are the fewest degrees of freedom we
need to express the widest possible range of stepping actions? Our
work is one candidate answer to this question, but of course much
more rigorous study should be done in this direction.
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