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Figure 1: Multiple views of a 3,000 agent simulation with high quality rendering.

Abstract

In terms of computation, steering through a crowd of pedestri-
ans is a challenging task. The problem space is inherently high-
dimensional, with each added agent giving yet another set of pa-
rameters to consider while finding a solution. Yet in the real world,
navigating through a crowd of people is very similar regardless of
the population size. The closest people have the most impact while
those distant set a more general strategy. To this end, we propose a
data-driven system for steering in crowd simulations by splitting the
problem space into coarse features for the general world, and fine
features for other agents nearby. The system is comprised of a col-
lection of steering contexts, which are qualitatively different overall
traffic patterns. Due to their similarity, the scenarios within these
contexts have a machine-learned model fit to the data of an offline
planner which serves as an oracle for generating synthetic training
data. An additional layer of machine-learning is used to select the
current context at runtime, and the context’s policy consulted for the
agent’s next step. We experienced speedup from hours per scenario
with the offline planner and 10 agents to an interactive framerate of
10FPS for 3,000 agents using our data-driven technique.
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1 Introduction

Crowd simulations are increasingly called upon for realtime virtual
experiences. This push also includes a component of dynamic in-
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teraction with a user which adds additional unpredictability to the
agents’ decision-making process. The problem of predicting a pri-
ori the possible situations an agent will encounter rapidly becomes
intractable in the face of increasing parameters in the form of users
given more freedom in their virtual worlds, and thus we need algo-
rithms that are scalable not only in agent count, but circumstance as
well.

We introduce the concept of steering contexts—collections of situ-
ations selected for their qualitative similarity. By identifying such
contexts we also divide the problem space, which limits the nec-
essary scope of data-driven solutions. which were previously data-
bound due to the complexity of human nature, data collection meth-
ods, and environmental limitations. Furthermore, we introduce a
pipeline that leverages these contexts through the use of machine-
learned models trained on synthetic data from a space-time planner
to counter the logistical challenges of attaining sufficient scenario
coverage from real-world observations. These models take as input
nearby agents and obstacles and return the next footstep the agent
should take.

This paper makes the following contributions:

• We introduce and use steering contexts to separate data for
easier machine learning.

• We demonstrate the efficacy of synthetic training data from
stochastically generated samples for better control over data
collection resulting in more universal coverage of possible sit-
uations.

• Our pipeline produces a fast runtime algorithm with similar
steering characteristics to a slower, more optimal algorithm.

2 Related Work

Following seminal work [Reynolds 1987] on flocking behaviors
using particle systems, the field of crowd simulation has grown
into a well-developed, multi-faceted area of study. In this sec-
tion we review other publications most applicable to this work and
for a broader survey of the field we refer the reader to the reviews
in [Thalmann and Musse 2007; Pelechano et al. 2008].

Crowd simulation strives to replicate the pedestrian behavior of a
group of people as realistically as possible while remaining compu-
tationally tractable. Due to this pull between two extremes—human
complexity and processing speed—algorithms have been formu-
lated as an abstraction to human behavior. These abstractions vary
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Figure 2: Our pipeline for using steering contexts to develop a machine-learned model for use at runtime. The majority of the pipeline is
offline processing. A collection of models is trained on data extracted from an oracle algorithm’s solution to steering situations, which are
stochastically generated. Then each model is a boosted decision tree with its own specialization. The action space consists of footsteps as an
advantageous discretization which permits direct control and modeling of human locomotion.

in how they approach the problem of moving so many agents.

Centralized Techniques. This category of approaches looks at the
agents as pieces, either discrete or part of a continuous entity, on a
board and moves each agent in accordance with a desired global
outcome. Since a centralized process is planning their actions,
agents appear to have an omniscient knowledge of their environ-
ment. Particle system approaches [Reynolds 1987; Reynolds 1999]
replace the Newtonian physics of a typical n-body simulation with
social forces. These particle approaches are further refined in the
social force models of [Helbing and Molnar 1995; Pelechano et al.
2007].

Centralized techniques rely on a broad conformity amongst the
population for best efficiency as seen the fluid-like approach
of [Treuille et al. 2006]. This is an acceptable premise for group-
dynamic simulations as used in the study of crowd flows in reli-
gious pilgrimages [Schneider et al. 2011] and emergency evacua-
tions [Narain et al. 2009], but such an approach does not handle
low-level micro-management well, which is expected when a user
is an active participant in the virtual world rather than a passive
observer.

Agent-based Techniques. To introduce more individuality in a
simulation’s agents, we can make steering an integral part of the
agents’ abilities.

Geometric algorithms such as [van den Berg and Manocha 2008;
Guy et al. 2009] determine their next action based on which veloci-
ties may avoid a collision with another agent. This similar to the ap-
proach used by [Ondřej et al. 2010] which uses a synthetic sense of
vision to determine information about other agents’ trajectories and
adjust accordingly. Agents have also used affordance fields [Kapa-
dia et al. 2009] to try to find safe passage to a goal. A cognitive
system was used in the seminal work [Shao and Terzopoulos 2007]
which included utility functions for desires, an attentional system to
limit perception of the environment, and a motor system to carry out
actions. Recently, a rule-based adaptive system [Singh et al. 2011]
was proposed that switched between other steering algorithms to
best suit an agent’s needs.

Machine learning has been used [Metoyer and Hodgins 2003]

which takes designer suggestions for how agents should steer in
their world and fits a model. Additionally, samples of real-life steer-
ing behavior can be used with the machine learning to fit better
models.

Data-Driven Techniques. Work in data-driven steering has fo-
cused primarily on generating local-space samples from observa-
tions of real people. In [Lerner et al. 2007] video samples were
compiled into a database which was queried at runtime and tra-
jectories were copied and used by the agents based solely on the
similarity of the agents’ surroundings to the video examples. The
work of [Lee et al. 2007] used a more constrained state space of
discretized slices around an agent and focused more on recreating
group dynamics than individual steering. A similar state space is
used by [Torrens et al. 2011] as one of two state spaces. A sepa-
rate state space consisting of a discretized view frustum was used
for environmental navigation. In common to all these techniques
is using one collection of samples for all navigation under a single
model.

Comparison to Related Work. Our work builds on the adaptive
use of algorithms in [Singh et al. 2011]. While the adaptive al-
gorithm swapped between policies based on hand-coded rules, we
employ machine learning to fit a model that determines which pol-
icy to use for a given decision. We also expand on the idea of fail-
ure sets from [Kapadia et al. 2011] by taking the concept further
with the use of their inverse to create contexts for steering. Our use
of “contexts” is different from that found in [Lerner et al. 2010] as
our contexts are egocentric, not scenario-wide. Another data-driven
method seen in [Courty and Corpetti 2007] focuses on capturing the
dynamics of the overall crowd, while we focus on the individual
agents. The closest data-driven system compared to our pipeline is
that of [Torrens et al. 2011] which uses interchangeable state spaces
but also uses clustering to try to separate data after the fact where
we separate the data from the beginning of the process. Our exclu-
sive use of an oracle algorithm in lieu of real-data is also unique to
this paper.
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3 Technique

We now explain our pipeline shown in Figure 2 for the integration
of various contexts into a unified steering algorithm. First, training
data must be collected, which we generate by means of an oracle
algorithm. Next, the various machine-learned models must be fit to
the data. Finally, these models are used at runtime to decide where
an agent’s next footstep should be placed.

3.1 Steering Contexts

We identified 24 qualitatively different types of steering challenges,
which we call steering contexts. These steering contexts were de-
fined intuitively based on overall traffic pattern, agent density, and
the presence or lack of obstacles. Each context has a policy espe-
cially fit to it using decision trees. These trees take in a feature
vector consisting of the local environment and return the next foot-
step location for the agent.

As seen in Figure 3, this allows for the rapid creation of steering
policies for a diverse range of scenarios while still abstracting at a
high level to manage the learning process and keep the number of
features needed low. Agents distinguish which context their envi-
ronment best represents through the use of another classifier using
more abstract features. The multiplicity of steering policies allows
for a more robust total system, as the agents’ steering automatically
adjusts as their environment evolves.

3.2 Training Data Generation

We define two orthogonal features for the area in each cardinal di-
rection about the agent for a total of 8 features, with a ninth feature
special to the region ahead of the agent. The components of each
area are agent density and the net flow of agents in that area, with
the area directly in front of the agent detecting the presence or lack
of obstacles. Agent density is a rough approximation of overall
crowding in the cardinal directions and includes obstacles. Net flow
is the average velocity direction of agents in a particular area. This
helps determine whether or not the general crowd is moving with
or against the agent, which requires different care for such things as
collision avoidance.

A data-driven approach relies on the quality and coverage of its
training samples. Real-world data is often used as a source be-
cause humans empirically solve any presented steering challenges
and we wish to create virtual representations of humans. However,
we cannot completely control the steering scenarios or know all the
variables in the decision-making process of the people observed.
To enforce artificial limitations on the scenarios would impact the
integrity of the data through the influences of the observer effect.
Second, we have no way of knowing a priori whether the data set
collected has adequate sample coverage for the situations the agents
will need to handle. The problem of this potential incompleteness
is compounded by the overhead—or impracticality—of collecting
additional data. For these reasons, our pipeline uses synthetic data
from which we can be conveniently gather additional samples and
know all the influences in advance.

3.3 Oracle Algorithm

Our oracle algorithm is based on a memory-bounded A? planner
with a discrete footstep action space similar to the action space
in [Singh et al. 2011]. We choose a footstep action space be-
cause our machine learning can use classifiers instead of being con-
strained to regression. When the oracle is run on the generated
scenarios, each agent uses the memory-bounded A? planner to cal-
culate the optimal path from its current location to the goal. The

Algorithm 1: Oracle Planner
Data: Start, goal, low memory bound, max memory

bound, memory increment size.
Result: The path from start to goal.

1 for i← memMin to memMax do
2 path← BoundAStar (start, goal, i)
3 if path.size = 0 then
4 i← i + memBlock
5 else
6 return path

// Could not find path with BoundAStar

7 path← IDAStar (start, goal)
8 return path

bound on the memory is raised if a path is not found, as a last re-
sort Iterative Deepening A? (IDA?) is used. The oracle planner’s
overall algorithm is given in Algorithm 1, and the heuristic used is
in Equation 1 and is based on the distance to the goal and average
expected energy cost to reach that goal.

h (p,g) =
‖p− g‖ · energyavg

strideavg
(1)

Each agent has full knowledge only of the obstacles and agents
within the horizon of its field of view. Since other agents may en-
ter or leave this field of view, each agent must monitor its path for
new collisions and invoke the planner again if such a problem is
found. We chose this limitation on the oracle because of the radius
of the feature spaces used to sample the data, and the human-factors
nature of the feature space designs.

The simulations using the oracle are recorded for later extraction of
training samples. As the oracle does not use any feature spaces, the
same oracle recordings can be used to extract data with different
feature spaces, allowing for future exploration of such possibilities.
We extract a state-action pair 〈f , a〉where f is a vector from feature
space F and a is the parameters of the agent’s current step, and use
it as a sample for training.

3.4 Decision Trees

Avoiding the requirement that the learned policy be a monolithic,
universal solution has several key benefits. First, the policies can be
simpler and thus executed faster at runtime. Second, we avoid the
catastrophically high dimensionality common to such approaches,
which are held back by all the factors that can influence every po-
tential action. Finally, we do not need to relearn the entire system to
assimilate new data. By using one model to select more specialized
models, new data requires only the specialized model it belongs to
be relearned. Even the creation of a new context only requires the
top-level model be recomputed while the other models are still valid
and will not be harmed by potentially contradictory data.

Each of our policies consists of two boosted decision trees; one
for each foot. We use a Windows port of the GPL release of the
C5.0 decision tree system (http://www.rulequest.com).
We chose ten trees as the amount of boosting empirically based
on cross-validation. In total 2500 scenarios were sampled from
each context and each scenario was generated with respect to a cen-
tral agent, which provided a variable number of steps per scenario.
These steps then became the situations representative of the context
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Figure 3: The multilevel decision trees used by our models. At run-
time the agent gives the model information about its current goal
and environment in local-space. This data is used to calculate f for
each model used. First the context classifier informs the agent of its
current context, and the corresponding policy is used to determine
the next footstep.

Algorithm 2: Agent Decision at Runtime
Data: The environment with respect to the agent.
Result: The next footstep action.

1 fStar← ObserveEnvironment ()
2 contextID← ContextClassifier (fStar)

3 f ← ObserveLocalSpace (contextID)
4 action← Classifier (f ,contextID)

5 if action.confidence ≤ threshold then
6 action← StopInPlace

7 return action.step

for the specialized classifier. A context classification sample was
only generated for the first five steps of each recording due to the
total number of scenarios that were sampled, all of which supplied
data to the context classifier.

3.5 Steering At Runtime

At runtime the agent generates feature vectors corresponding to
both the context classifier’s feature space and the corresponding
specialized model’s feature space and receives parameters used to
derive its next footstep. These parameters include a relative off-
set and rotational angle to the next step’s location, while specifics
such as stride length are calculated on the fly based on the agent’s
inherent characteristics. This step is validated and if found to be
unfit, a default “emergency action” takes place, wherein the agent
immediately stops. This allows the agent to try again after a short
cool-down period. This safety net was implemented to account for
the worst-case where a returned action is outside of the parameters
permitted by the agents’ walking such as two steps in a row from
the same foot or too wide a turn. The models cannot be expected
to be 100% accurate, which is the source of these potential errors.
Pseudocode for the agents’ runtime is listed in Algorithm 2.

To account for the imprecision in identifying steering contexts, we
use a confidence threshold. This rating is roughly defined as the
number of correct classifications made by the leaf nodes divided by
the total number of classifications made by the same node, making
it a static quantity once the tree is learned. If the confidence thresh-
old is not met by the classification the agent stops with the ability to
resume as conditions change. This confidence value is not a direct
reflection on the technique itself, but is instead heavily affected by
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Figure 4: Total time taken for computing the steps of a simula-
tion 1,200 frames long for varying numbers of agents with ran-
domly generated obstacles and an overall small area. Overhead
was mostly incurred from a naı̈ve implementation of agent density
measurement which is O

(
n2

)
where n is the number of agents.

pruning the decision trees to yield a more general model.

Note in Algorithm 2 there is no explicit collision detection or avoid-
ance. In our system, runtime collision detection and avoidance is
handled implicitly through the training data itself. This is different
from other techniques such as [Lerner et al. 2007] where training
samples are used but thorough handling of collisions is required.
Empirically, even without explicit collision detection the amount of
per-capita collisions is relatively low.

4 Results

We generated approximately 2,500 samples for each of our initial
24 contexts. The oracle algorithm required two weeks of contin-
uous computation to return paths for all of the sample scenarios.
Those scenarios which were shown to require IDA? were culled
in the interest of time. All results were generated on a desktop
with 16.0GB of RAM, Intel Core i7 860 CPU at 2.8GHz, and an
NVIDIA GeForce GTX 680.

4.1 Classifier Accuracy

Figure 5 plots the error rate for the classifiers used in our experi-
ments. Simulations were run using models trained on amounts of
data ranging from 100 to 2000 scenarios per context. A separate
validation set of 200 scenarios per context were kept back to calcu-
late the error rate of the resulting trees.

Error rates were high but did decrease as data size increased, show-
ing improvement in generalization and not simply noise. Addition-
ally, the average number of steps used for each context was ap-
proximately 12, which sets random guess accuracy at 8%, which
we clearly overcame. Furthermore, random guess accuracy of 24
contexts is 4% which we also surpassed. The error rate seen in
the context classifier is likely a result of how the training data was
generated in a noisy manner, for instance some overlap in density
between a high density scenario and a medium density scenario ex-
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Figure 5: Classifier error rates for both context classifier (blue)
and an average over the specialized classifiers (red). While the
context classifier has a high error rate, a 96% error rate is random
chance given the large number of classes to choose from.

ists. A large burden is also placed on the decision trees to distin-
guish the Chaos context from other contexts but this by its nature
adds a lot of noise and has no structure, making it difficult to define
hyperplanes to separate such scenarios.

4.2 Runtime

Our initial instantiation of a context-sensitive pipeline is much
faster at runtime than the oracle. As seen in Table 1, all contexts
experienced speedup, especially significant for the most challeng-
ing scenarios involving obstacles. The Chaos context, both with
and without obstacles, was the most challenging for the oracle and
resulted in skewed performance data due to the number of scenar-
ios which were culled. Our method showed an extremely constant
amount of time across the different contexts owing to its dynamic
model-swapping.

To test the robustness of our collection of models, we created a
large-scale simulation consisting of randomly generated obstacles,
agents, and goals, as seen in Figure 1. We measured the time to
generate the paths for varying numbers of agents to simulate 1,200
frames, with the results given in Figure 4. All tests were run using a
single-threaded implementation and realtime framerates were expe-
rienced at 1,500 agents and interactive framerates of about 10FPS
were experienced with as many as 3,000 agents.

5 Conclusion and Future Work

In this paper, we have defined steering contexts, a new view on
the space of possible scenarios an agent may encounter as it steers
through its virtual world. We have also proposed a pipeline for con-
structing a steering algorithm that is both context-sensitive and scal-
able to circumstance. Through the use of a multiplicity of models
fit to steering contexts, machine learned can be combined for bet-
ter, and more structured, coverage of the space of possible scenarios
than would otherwise be possible by a single-model approach gen-
eralizing to all situations. We used an oracle algorithm to get high
quality, on-demand training data which can be used for new con-

texts without the overhead or uncertainty of real-world data. This
training data was then broken into contexts based on intuition and
policies fit for each context using machine learning.

Our technique has shown a massive increase in efficiency as re-
altime simulation was achieved with far higher population counts
than the oracle algorithm could handle. Furthermore, training on
this data resulted in relatively small numbers of collisions, many of
them minor. This system would be ideal for populating a space with
“extras” which are not the focus of an end-user’s attention. In such
a background application, the infrequent collisions would be more
likely to go unnoticed.

Future Work.

The decision tree models used to prototype our pipeline are too
restricting if the chosen action is incorrect. A naı̈ve Bayesian ap-
proach would allow a better “next best” progression of footstep se-
lection rather than the current all-or-nothing approach. Multiple al-
gorithms can coexist throughout the collection of policies allowing
each context to be fit as needed for better overall accuracy. Further-
more the contexts themselves could be defined from a collection
of data using unsupervised clustering, further removing the human
element from the problem.

Currently we decide the next step an agent should take and deciding
multiple steps would require an exponential increase in the size of
the action space if done naı̈vely. However, we postulate that anal-
ysis of step sequences would reveal that not all step combinations
need to be learned, drastically decreasing the overhead. Maneuvers
such as overtaking other pedestrians or rounding corners could then
be encapsulated, rather than depending on each step in the process
being decided accurately. Even with 90% decision accuracy, a 5-
step sequence has a probability of being correct of only about 60%.
Furthermore, rather than such a short horizon of a single step, this
machine learning approach could tackle navigation instead and plot
a waypoint, while a fast but reactive algorithm such as RVO moves
the agent through the waypoints.

Finally, this data-driven approach is highly amenable to paralleliza-
tion, and the results in this paper only for single-threaded perfor-
mance. Exploring scalability with increased thread count would
further show the strength of our technique.
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